Loogle!
Result
Found 14 declarations mentioning MeasureTheory.FiniteMeasure.map.
- MeasureTheory.FiniteMeasure.map 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) (f : Ω → Ω') : MeasureTheory.FiniteMeasure Ω' - MeasureTheory.FiniteMeasure.toMeasure_map 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) (f : Ω → Ω') : ↑(ν.map f) = MeasureTheory.Measure.map f ↑ν - MeasureTheory.FiniteMeasure.map.eq_1 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) (f : Ω → Ω') : ν.map f = ⟨MeasureTheory.Measure.map f ↑ν, ⋯⟩ - MeasureTheory.FiniteMeasure.continuous_map 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] [TopologicalSpace Ω] [OpensMeasurableSpace Ω] [TopologicalSpace Ω'] [BorelSpace Ω'] {f : Ω → Ω'} (f_cont : Continuous f) : Continuous fun ν => ν.map f - MeasureTheory.FiniteMeasure.map_apply 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) {f : Ω → Ω'} (f_mble : Measurable f) {A : Set Ω'} (A_mble : MeasurableSet A) : (ν.map f) A = ν (f ⁻¹' A) - MeasureTheory.FiniteMeasure.map_apply_of_aemeasurable 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) {f : Ω → Ω'} (f_aemble : AEMeasurable f ↑ν) {A : Set Ω'} (A_mble : MeasurableSet A) : (ν.map f) A = ν (f ⁻¹' A) - MeasureTheory.FiniteMeasure.map_apply' 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] (ν : MeasureTheory.FiniteMeasure Ω) {f : Ω → Ω'} (f_aemble : AEMeasurable f ↑ν) {A : Set Ω'} (A_mble : MeasurableSet A) : ↑(ν.map f) A = ↑ν (f ⁻¹' A) - MeasureTheory.FiniteMeasure.map_add 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] {f : Ω → Ω'} (f_mble : Measurable f) (ν₁ ν₂ : MeasureTheory.FiniteMeasure Ω) : (ν₁ + ν₂).map f = ν₁.map f + ν₂.map f - MeasureTheory.FiniteMeasure.tendsto_map_of_tendsto_of_continuous 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] [TopologicalSpace Ω] [OpensMeasurableSpace Ω] [TopologicalSpace Ω'] [BorelSpace Ω'] {ι : Type u_3} {L : Filter ι} (νs : ι → MeasureTheory.FiniteMeasure Ω) (ν : MeasureTheory.FiniteMeasure Ω) (lim : Filter.Tendsto νs L (nhds ν)) {f : Ω → Ω'} (f_cont : Continuous f) : Filter.Tendsto (fun i => (νs i).map f) L (nhds (ν.map f)) - MeasureTheory.FiniteMeasure.map_smul 📋 Mathlib.MeasureTheory.Measure.FiniteMeasure
{Ω : Type u_1} {Ω' : Type u_2} [MeasurableSpace Ω] [MeasurableSpace Ω'] {f : Ω → Ω'} (c : NNReal) (ν : MeasureTheory.FiniteMeasure Ω) : (c • ν).map f = c • ν.map f - MeasureTheory.FiniteMeasure.prod_swap 📋 Mathlib.MeasureTheory.Measure.FiniteMeasureProd
{α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : (μ.prod ν).map Prod.swap = ν.prod μ - MeasureTheory.FiniteMeasure.map_prod_map 📋 Mathlib.MeasureTheory.Measure.FiniteMeasureProd
{α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {α' : Type u_3} [MeasurableSpace α'] {β' : Type u_4} [MeasurableSpace β'] {f : α → α'} {g : β → β'} (f_mble : Measurable f) (g_mble : Measurable g) : (μ.map f).prod (ν.map g) = (μ.prod ν).map (Prod.map f g) - MeasureTheory.FiniteMeasure.map_fst_prod 📋 Mathlib.MeasureTheory.Measure.FiniteMeasureProd
{α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : (μ.prod ν).map Prod.fst = ν Set.univ • μ - MeasureTheory.FiniteMeasure.map_snd_prod 📋 Mathlib.MeasureTheory.Measure.FiniteMeasureProd
{α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : (μ.prod ν).map Prod.snd = μ Set.univ • ν
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65