Loogle!
Result
Found 26 declarations mentioning MeasureTheory.OuterMeasure.map.
- MeasureTheory.OuterMeasure.map 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) : MeasureTheory.OuterMeasure α →ₗ[ENNReal] MeasureTheory.OuterMeasure β - MeasureTheory.OuterMeasure.map_id 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} (m : MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map id) m = m - MeasureTheory.OuterMeasure.map_mono 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) : Monotone ⇑(MeasureTheory.OuterMeasure.map f) - MeasureTheory.OuterMeasure.map_top_of_surjective 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_2} (f : α → β) (hf : Function.Surjective f) : (MeasureTheory.OuterMeasure.map f) ⊤ = ⊤ - MeasureTheory.OuterMeasure.map_apply 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) (m : MeasureTheory.OuterMeasure α) (s : Set β) : ((MeasureTheory.OuterMeasure.map f) m) s = m (f ⁻¹' s) - MeasureTheory.OuterMeasure.restrict.eq_1 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} (s : Set α) : MeasureTheory.OuterMeasure.restrict s = MeasureTheory.OuterMeasure.map Subtype.val ∘ₗ MeasureTheory.OuterMeasure.comap Subtype.val - MeasureTheory.OuterMeasure.comap_map 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} {f : α → β} (hf : Function.Injective f) (m : MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.comap f) ((MeasureTheory.OuterMeasure.map f) m) = m - MeasureTheory.OuterMeasure.map_comap_of_surjective 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} {f : α → β} (hf : Function.Surjective f) (m : MeasureTheory.OuterMeasure β) : (MeasureTheory.OuterMeasure.map f) ((MeasureTheory.OuterMeasure.comap f) m) = m - MeasureTheory.OuterMeasure.le_comap_map 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) (m : MeasureTheory.OuterMeasure α) : m ≤ (MeasureTheory.OuterMeasure.comap f) ((MeasureTheory.OuterMeasure.map f) m) - MeasureTheory.OuterMeasure.map_comap_le 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) (m : MeasureTheory.OuterMeasure β) : (MeasureTheory.OuterMeasure.map f) ((MeasureTheory.OuterMeasure.comap f) m) ≤ m - MeasureTheory.OuterMeasure.map_top 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_2} (f : α → β) : (MeasureTheory.OuterMeasure.map f) ⊤ = (MeasureTheory.OuterMeasure.restrict (Set.range f)) ⊤ - MeasureTheory.OuterMeasure.map_iSup 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} {ι : Sort u_4} (f : α → β) (m : ι → MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map f) (⨆ i, m i) = ⨆ i, (MeasureTheory.OuterMeasure.map f) (m i) - MeasureTheory.OuterMeasure.map_comap 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) (m : MeasureTheory.OuterMeasure β) : (MeasureTheory.OuterMeasure.map f) ((MeasureTheory.OuterMeasure.comap f) m) = (MeasureTheory.OuterMeasure.restrict (Set.range f)) m - MeasureTheory.OuterMeasure.map_map 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} {γ : Type u_4} (f : α → β) (g : β → γ) (m : MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map g) ((MeasureTheory.OuterMeasure.map f) m) = (MeasureTheory.OuterMeasure.map (g ∘ f)) m - MeasureTheory.OuterMeasure.map_le_restrict_range 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} {ma : MeasureTheory.OuterMeasure α} {mb : MeasureTheory.OuterMeasure β} {f : α → β} : (MeasureTheory.OuterMeasure.map f) ma ≤ (MeasureTheory.OuterMeasure.restrict (Set.range f)) mb ↔ (MeasureTheory.OuterMeasure.map f) ma ≤ mb - MeasureTheory.OuterMeasure.map_sup 📋 Mathlib.MeasureTheory.OuterMeasure.Operations
{α : Type u_1} {β : Type u_3} (f : α → β) (m m' : MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map f) (m ⊔ m') = (MeasureTheory.OuterMeasure.map f) m ⊔ (MeasureTheory.OuterMeasure.map f) m' - MeasureTheory.OuterMeasure.map_ofFunction 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {m : Set α → ENNReal} {m_empty : m ∅ = 0} {β : Type u_2} {f : α → β} (hf : Function.Injective f) : (MeasureTheory.OuterMeasure.map f) (MeasureTheory.OuterMeasure.ofFunction m m_empty) = MeasureTheory.OuterMeasure.ofFunction (fun s => m (f ⁻¹' s)) m_empty - MeasureTheory.OuterMeasure.map_ofFunction_le 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {m : Set α → ENNReal} {m_empty : m ∅ = 0} {β : Type u_2} (f : α → β) : (MeasureTheory.OuterMeasure.map f) (MeasureTheory.OuterMeasure.ofFunction m m_empty) ≤ MeasureTheory.OuterMeasure.ofFunction (fun s => m (f ⁻¹' s)) m_empty - MeasureTheory.OuterMeasure.map_iInf_le 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {ι : Sort u_2} {β : Type u_3} (f : α → β) (m : ι → MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map f) (⨅ i, m i) ≤ ⨅ i, (MeasureTheory.OuterMeasure.map f) (m i) - MeasureTheory.OuterMeasure.map_iInf 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {ι : Sort u_2} {β : Type u_3} {f : α → β} (hf : Function.Injective f) (m : ι → MeasureTheory.OuterMeasure α) : (MeasureTheory.OuterMeasure.map f) (⨅ i, m i) = (MeasureTheory.OuterMeasure.restrict (Set.range f)) (⨅ i, (MeasureTheory.OuterMeasure.map f) (m i)) - MeasureTheory.OuterMeasure.map_iInf_comap 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {ι : Sort u_2} {β : Type u_3} [Nonempty ι] {f : α → β} (m : ι → MeasureTheory.OuterMeasure β) : (MeasureTheory.OuterMeasure.map f) (⨅ i, (MeasureTheory.OuterMeasure.comap f) (m i)) = ⨅ i, (MeasureTheory.OuterMeasure.map f) ((MeasureTheory.OuterMeasure.comap f) (m i)) - MeasureTheory.OuterMeasure.map_biInf_comap 📋 Mathlib.MeasureTheory.OuterMeasure.OfFunction
{α : Type u_1} {ι : Type u_2} {β : Type u_3} {I : Set ι} (hI : I.Nonempty) {f : α → β} (m : ι → MeasureTheory.OuterMeasure β) : (MeasureTheory.OuterMeasure.map f) (⨅ i ∈ I, (MeasureTheory.OuterMeasure.comap f) (m i)) = ⨅ i ∈ I, (MeasureTheory.OuterMeasure.map f) ((MeasureTheory.OuterMeasure.comap f) (m i)) - MeasureTheory.Measure.map_toOuterMeasure 📋 Mathlib.MeasureTheory.Measure.Map
{α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure α} {f : α → β} (hf : AEMeasurable f μ) : (MeasureTheory.Measure.map f μ).toOuterMeasure = ((MeasureTheory.OuterMeasure.map f) μ.toOuterMeasure).trim - MeasureTheory.Measure.mapₗ.eq_1 📋 Mathlib.MeasureTheory.Measure.Map
{α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] (f : α → β) : MeasureTheory.Measure.mapₗ f = if hf : Measurable f then MeasureTheory.Measure.liftLinear (MeasureTheory.OuterMeasure.map f) ⋯ else 0 - MeasureTheory.OuterMeasure.isometryEquiv_map_mkMetric 📋 Mathlib.MeasureTheory.Measure.Hausdorff
{X : Type u_2} {Y : Type u_3} [EMetricSpace X] [EMetricSpace Y] (m : ENNReal → ENNReal) (f : X ≃ᵢ Y) : (MeasureTheory.OuterMeasure.map ⇑f) (MeasureTheory.OuterMeasure.mkMetric m) = MeasureTheory.OuterMeasure.mkMetric m - MeasureTheory.OuterMeasure.isometry_map_mkMetric 📋 Mathlib.MeasureTheory.Measure.Hausdorff
{X : Type u_2} {Y : Type u_3} [EMetricSpace X] [EMetricSpace Y] (m : ENNReal → ENNReal) {f : X → Y} (hf : Isometry f) (H : Monotone m ∨ Function.Surjective f) : (MeasureTheory.OuterMeasure.map f) (MeasureTheory.OuterMeasure.mkMetric m) = (MeasureTheory.OuterMeasure.restrict (Set.range f)) (MeasureTheory.OuterMeasure.mkMetric m)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65