Loogle!
Result
Found 33 declarations mentioning MeasureTheory.integral and MeasureTheory.lintegral.
- MeasureTheory.integral_coe_le_of_lintegral_coe_le 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → NNReal} {b : NNReal} (h : ∫⁻ (a : α), ↑(f a) ∂μ ≤ ↑b) : ∫ (a : α), ↑(f a) ∂μ ≤ ↑b - MeasureTheory.norm_integral_le_lintegral_norm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → G) : ‖∫ (a : α), f a ∂μ‖ ≤ (∫⁻ (a : α), ENNReal.ofReal ‖f a‖ ∂μ).toReal - MeasureTheory.lintegral_coe_eq_integral 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → NNReal) (hfi : MeasureTheory.Integrable (fun x => ↑(f x)) μ) : ∫⁻ (a : α), ↑(f a) ∂μ = ENNReal.ofReal (∫ (a : α), ↑(f a) ∂μ) - MeasureTheory.integral_toReal 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → ENNReal} (hfm : AEMeasurable f μ) (hf : ∀ᵐ (x : α) ∂μ, f x < ⊤) : ∫ (a : α), (f a).toReal ∂μ = (∫⁻ (a : α), f a ∂μ).toReal - MeasureTheory.lintegral_coe_le_coe_iff_integral_le 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → NNReal} (hfi : MeasureTheory.Integrable (fun x => ↑(f x)) μ) {b : NNReal} : ∫⁻ (a : α), ↑(f a) ∂μ ≤ ↑b ↔ ∫ (a : α), ↑(f a) ∂μ ≤ ↑b - MeasureTheory.integral_eq_lintegral_of_nonneg_ae 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → ℝ} (hf : 0 ≤ᵐ[μ] f) (hfm : MeasureTheory.AEStronglyMeasurable f μ) : ∫ (a : α), f a ∂μ = (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal - MeasureTheory.integral_eq_lintegral_pos_part_sub_lintegral_neg_part 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → ℝ} (hf : MeasureTheory.Integrable f μ) : ∫ (a : α), f a ∂μ = (∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ).toReal - (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ).toReal - MeasureTheory.integral_norm_eq_lintegral_enorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {P : Type u_7} [NormedAddCommGroup P] {f : α → P} (hf : MeasureTheory.AEStronglyMeasurable f μ) : ∫ (x : α), ‖f x‖ ∂μ = (∫⁻ (x : α), ‖f x‖ₑ ∂μ).toReal - MeasureTheory.integral_norm_eq_lintegral_nnnorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {P : Type u_7} [NormedAddCommGroup P] {f : α → P} (hf : MeasureTheory.AEStronglyMeasurable f μ) : ∫ (x : α), ‖f x‖ ∂μ = (∫⁻ (x : α), ‖f x‖ₑ ∂μ).toReal - MeasureTheory.ofReal_integral_norm_eq_lintegral_enorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {P : Type u_7} [NormedAddCommGroup P] {f : α → P} (hf : MeasureTheory.Integrable f μ) : ENNReal.ofReal (∫ (x : α), ‖f x‖ ∂μ) = ∫⁻ (x : α), ‖f x‖ₑ ∂μ - MeasureTheory.ofReal_integral_norm_eq_lintegral_nnnorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {P : Type u_7} [NormedAddCommGroup P] {f : α → P} (hf : MeasureTheory.Integrable f μ) : ENNReal.ofReal (∫ (x : α), ‖f x‖ ∂μ) = ∫⁻ (x : α), ‖f x‖ₑ ∂μ - MeasureTheory.ofReal_integral_eq_lintegral_ofReal 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f : α → ℝ} (hfi : MeasureTheory.Integrable f μ) (f_nn : 0 ≤ᵐ[μ] f) : ENNReal.ofReal (∫ (x : α), f x ∂μ) = ∫⁻ (x : α), ENNReal.ofReal (f x) ∂μ - MeasureTheory.ennnorm_integral_le_lintegral_ennnorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → G) : ‖∫ (a : α), f a ∂μ‖ₑ ≤ ∫⁻ (a : α), ‖f a‖ₑ ∂μ - MeasureTheory.enorm_integral_le_lintegral_enorm 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → G) : ‖∫ (a : α), f a ∂μ‖ₑ ≤ ∫⁻ (a : α), ‖f a‖ₑ ∂μ - MeasureTheory.nndist_integral_add_measure_le_lintegral 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} {f : α → G} (h₁ : MeasureTheory.Integrable f μ) (h₂ : MeasureTheory.Integrable f ν) : ↑(nndist (∫ (x : α), f x ∂μ) (∫ (x : α), f x ∂(μ + ν))) ≤ ∫⁻ (x : α), ‖f x‖ₑ ∂ν - MeasureTheory.tendsto_integral_of_L1 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_6} (f : α → G) (hfi : MeasureTheory.Integrable f μ) {F : ι → α → G} {l : Filter ι} (hFi : ∀ᶠ (i : ι) in l, MeasureTheory.Integrable (F i) μ) (hF : Filter.Tendsto (fun i => ∫⁻ (x : α), ‖F i x - f x‖ₑ ∂μ) l (nhds 0)) : Filter.Tendsto (fun i => ∫ (x : α), F i x ∂μ) l (nhds (∫ (x : α), f x ∂μ)) - MeasureTheory.tendsto_setIntegral_of_L1 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_6} (f : α → G) (hfi : MeasureTheory.Integrable f μ) {F : ι → α → G} {l : Filter ι} (hFi : ∀ᶠ (i : ι) in l, MeasureTheory.Integrable (F i) μ) (hF : Filter.Tendsto (fun i => ∫⁻ (x : α), ‖F i x - f x‖ₑ ∂μ) l (nhds 0)) (s : Set α) : Filter.Tendsto (fun i => ∫ (x : α) in s, F i x ∂μ) l (nhds (∫ (x : α) in s, f x ∂μ)) - MeasureTheory.integral_tsum 📋 Mathlib.MeasureTheory.Integral.DominatedConvergence
{α : Type u_1} {G : Type u_3} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_4} [Countable ι] {f : ι → α → G} (hf : ∀ (i : ι), MeasureTheory.AEStronglyMeasurable (f i) μ) (hf' : ∑' (i : ι), ∫⁻ (a : α), ‖f i a‖ₑ ∂μ ≠ ⊤) : ∫ (a : α), ∑' (i : ι), f i a ∂μ = ∑' (i : ι), ∫ (a : α), f i a ∂μ - MeasureTheory.lintegral_fn_integral_sub 📋 Mathlib.MeasureTheory.Integral.Prod
{α : Type u_1} {β : Type u_2} {E : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} [NormedAddCommGroup E] [MeasureTheory.SFinite ν] [NormedSpace ℝ E] [MeasureTheory.SFinite μ] ⦃f g : α × β → E⦄ (F : E → ENNReal) (hf : MeasureTheory.Integrable f (μ.prod ν)) (hg : MeasureTheory.Integrable g (μ.prod ν)) : ∫⁻ (x : α), F (∫ (y : β), f (x, y) - g (x, y) ∂ν) ∂μ = ∫⁻ (x : α), F (∫ (y : β), f (x, y) ∂ν - ∫ (y : β), g (x, y) ∂ν) ∂μ - MeasureTheory.L2.integral_inner_eq_sq_eLpNorm 📋 Mathlib.MeasureTheory.Function.L2Space
{α : Type u_1} {E : Type u_2} {𝕜 : Type u_4} [RCLike 𝕜] [MeasurableSpace α] {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (f : ↥(MeasureTheory.Lp E 2 μ)) : ∫ (a : α), inner 𝕜 (↑↑f a) (↑↑f a) ∂μ = ↑(∫⁻ (a : α), ↑‖↑↑f a‖₊ ^ 2 ∂μ).toReal - BoundedContinuousFunction.toReal_lintegral_coe_eq_integral 📋 Mathlib.MeasureTheory.Integral.BoundedContinuousFunction
{X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [OpensMeasurableSpace X] (f : BoundedContinuousFunction X NNReal) (μ : MeasureTheory.Measure X) : (∫⁻ (x : X), ↑(f x) ∂μ).toReal = ∫ (x : X), ↑(f x) ∂μ - MeasureTheory.tilted_apply 📋 Mathlib.MeasureTheory.Measure.Tilted
{α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.SFinite μ] (f : α → ℝ) (s : Set α) : (μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ) ∂μ - MeasureTheory.tilted_apply' 📋 Mathlib.MeasureTheory.Measure.Tilted
{α : Type u_1} {mα : MeasurableSpace α} (μ : MeasureTheory.Measure α) (f : α → ℝ) {s : Set α} (hs : MeasurableSet s) : (μ.tilted f) s = ∫⁻ (a : α) in s, ENNReal.ofReal (Real.exp (f a) / ∫ (x : α), Real.exp (f x) ∂μ) ∂μ - MeasureTheory.lintegral_tilted 📋 Mathlib.MeasureTheory.Measure.Tilted
{α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → ℝ) (g : α → ENNReal) : ∫⁻ (x : α), g x ∂μ.tilted f = ∫⁻ (x : α), ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ) * g x ∂μ - MeasureTheory.setLIntegral_tilted 📋 Mathlib.MeasureTheory.Measure.Tilted
{α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SFinite μ] (f : α → ℝ) (g : α → ENNReal) (s : Set α) : ∫⁻ (x : α) in s, g x ∂μ.tilted f = ∫⁻ (x : α) in s, ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ) * g x ∂μ - MeasureTheory.setLIntegral_tilted' 📋 Mathlib.MeasureTheory.Measure.Tilted
{α : Type u_1} {mα : MeasurableSpace α} {μ : MeasureTheory.Measure α} (f : α → ℝ) (g : α → ENNReal) {s : Set α} (hs : MeasurableSet s) : ∫⁻ (x : α) in s, g x ∂μ.tilted f = ∫⁻ (x : α) in s, ENNReal.ofReal (Real.exp (f x) / ∫ (x : α), Real.exp (f x) ∂μ) * g x ∂μ - MeasureTheory.lintegral_enorm_le_of_forall_fin_meas_integral_eq 📋 Mathlib.MeasureTheory.Function.ConditionalExpectation.Unique
{α : Type u_1} {m m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (hm : m ≤ m0) {f g : α → ℝ} (hf : MeasureTheory.StronglyMeasurable f) (hfi : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.StronglyMeasurable g) (hgi : MeasureTheory.IntegrableOn g s μ) (hgf : ∀ (t : Set α), MeasurableSet t → μ t < ⊤ → ∫ (x : α) in t, g x ∂μ = ∫ (x : α) in t, f x ∂μ) (hs : MeasurableSet s) (hμs : μ s ≠ ⊤) : ∫⁻ (x : α) in s, ‖g x‖ₑ ∂μ ≤ ∫⁻ (x : α) in s, ‖f x‖ₑ ∂μ - MeasureTheory.lintegral_nnnorm_le_of_forall_fin_meas_integral_eq 📋 Mathlib.MeasureTheory.Function.ConditionalExpectation.Unique
{α : Type u_1} {m m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (hm : m ≤ m0) {f g : α → ℝ} (hf : MeasureTheory.StronglyMeasurable f) (hfi : MeasureTheory.IntegrableOn f s μ) (hg : MeasureTheory.StronglyMeasurable g) (hgi : MeasureTheory.IntegrableOn g s μ) (hgf : ∀ (t : Set α), MeasurableSet t → μ t < ⊤ → ∫ (x : α) in t, g x ∂μ = ∫ (x : α) in t, f x ∂μ) (hs : MeasurableSet s) (hμs : μ s ≠ ⊤) : ∫⁻ (x : α) in s, ‖g x‖ₑ ∂μ ≤ ∫⁻ (x : α) in s, ‖f x‖ₑ ∂μ - ProbabilityTheory.evariance_eq_lintegral_ofReal 📋 Mathlib.Probability.Moments.Variance
{Ω : Type u_1} {mΩ : MeasurableSpace Ω} (X : Ω → ℝ) (μ : MeasureTheory.Measure Ω) : ProbabilityTheory.evariance X μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ - ProbabilityTheory.evariance.eq_1 📋 Mathlib.Probability.Moments.Variance
{Ω : Type u_1} {mΩ : MeasurableSpace Ω} (X : Ω → ℝ) (μ : MeasureTheory.Measure Ω) : ProbabilityTheory.evariance X μ = ∫⁻ (ω : Ω), ‖X ω - ∫ (x : Ω), X x ∂μ‖ₑ ^ 2 ∂μ - ProbabilityTheory.evariance_def' 📋 Mathlib.Probability.Moments.Variance
{Ω : Type u_1} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {X : Ω → ℝ} (hX : MeasureTheory.AEStronglyMeasurable X μ) : ProbabilityTheory.evariance X μ = ∫⁻ (ω : Ω), ‖X ω‖ₑ ^ 2 ∂μ - ENNReal.ofReal ((∫ (x : Ω), X x ∂μ) ^ 2) - ProbabilityTheory.Kernel.lintegral_fn_integral_sub_comp 📋 Mathlib.Probability.Kernel.Composition.IntegralCompProd
{α : Type u_1} {β : Type u_2} {γ : Type u_3} {E : Type u_4} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [NormedAddCommGroup E] {a : α} {κ : ProbabilityTheory.Kernel α β} {η : ProbabilityTheory.Kernel β γ} [NormedSpace ℝ E] ⦃f g : γ → E⦄ (F : E → ENNReal) (hf : MeasureTheory.Integrable f ((η.comp κ) a)) (hg : MeasureTheory.Integrable g ((η.comp κ) a)) : ∫⁻ (x : β), F (∫ (y : γ), f y - g y ∂η x) ∂κ a = ∫⁻ (x : β), F (∫ (y : γ), f y ∂η x - ∫ (y : γ), g y ∂η x) ∂κ a - ProbabilityTheory.Kernel.lintegral_fn_integral_sub 📋 Mathlib.Probability.Kernel.Composition.IntegralCompProd
{α : Type u_1} {β : Type u_2} {γ : Type u_3} {E : Type u_4} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [NormedAddCommGroup E] {a : α} {κ : ProbabilityTheory.Kernel α β} [ProbabilityTheory.IsSFiniteKernel κ] {η : ProbabilityTheory.Kernel (α × β) γ} [ProbabilityTheory.IsSFiniteKernel η] [NormedSpace ℝ E] ⦃f g : β × γ → E⦄ (F : E → ENNReal) (hf : MeasureTheory.Integrable f ((κ.compProd η) a)) (hg : MeasureTheory.Integrable g ((κ.compProd η) a)) : ∫⁻ (x : β), F (∫ (y : γ), f (x, y) - g (x, y) ∂η (a, x)) ∂κ a = ∫⁻ (x : β), F (∫ (y : γ), f (x, y) ∂η (a, x) - ∫ (y : γ), g (x, y) ∂η (a, x)) ∂κ a
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 3e2b26a