Loogle!
Result
Found 44 declarations mentioning Module.Basis.map.
- Module.Basis.map ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : Module.Basis ฮน R M' - Module.Basis.map_equiv ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ฮน : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] [Module R M'] (b : Module.Basis ฮน R M) (b' : Module.Basis ฮน' R M') (e : ฮน โ ฮน') : b.map (b.equiv b' e) = b'.reindex e.symm - Module.Basis.map_apply ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Module.Basis ฮน R M) (f : M โโ[R] M') (i : ฮน) : (b.map f) i = f (b i) - Module.Basis.coe_map ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : โ(b.map f) = โf โ โb - Module.Basis.map_repr ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : (b.map f).repr = f.symm โชโซโ b.repr - Module.Basis.map_equivFun ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] [Finite ฮน] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : (b.map f).equivFun = f.symm โชโซโ b.equivFun - Module.Basis.addSubgroupOfClosure.eq_1 ๐ Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [IsAddTorsionFree R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ฮน : Type u_9} (b : Module.Basis ฮน R M) (h : A = AddSubgroup.closure (Set.range โb)) : Module.Basis.addSubgroupOfClosure A b h = (Module.Basis.restrictScalars โค b).map (LinearEquiv.ofEq (Submodule.span โค (Set.range โb)) (AddSubgroup.toIntSubmodule A) โฏ) - Module.Basis.matrix.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.StdBasis
{ฮน : Type u_1} {R : Type u_2} {M : Type u_3} (m : Type u_4) (n : Type u_5) [Fintype m] [Fintype n] [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ฮน R M) : Module.Basis.matrix m n b = ((Pi.basis fun x => Pi.basis fun x => b).reindex ((Equiv.sigmaEquivProd m ((_ : n) ร ฮน)).trans ((Equiv.refl m).prodCongr (Equiv.sigmaEquivProd n ฮน)))).map (Matrix.ofLinearEquiv R) - Matrix.stdBasis.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.StdBasis
(R : Type u_1) (m : Type u_2) (n : Type u_3) [Fintype m] [Finite n] [Semiring R] : Matrix.stdBasis R m n = ((Pi.basis fun x => Pi.basisFun R n).reindex (Equiv.sigmaEquivProd m n)).map (Matrix.ofLinearEquiv R) - Module.Basis.smul_eq_map ๐ Mathlib.LinearAlgebra.Basis.SMul
{ฮน : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (g : M โโ[R] M) (b : Module.Basis ฮน R M) : g โข b = b.map g - Module.Basis.linearMap.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} {Mโ : Type u_3} {Mโ : Type u_4} {ฮนโ : Type u_6} {ฮนโ : Type u_7} [CommSemiring R] [AddCommMonoid Mโ] [AddCommMonoid Mโ] [Module R Mโ] [Module R Mโ] [Fintype ฮนโ] [Fintype ฮนโ] [DecidableEq ฮนโ] (bโ : Module.Basis ฮนโ R Mโ) (bโ : Module.Basis ฮนโ R Mโ) : bโ.linearMap bโ = (Matrix.stdBasis R ฮนโ ฮนโ).map (LinearMap.toMatrix bโ bโ).symm - Module.Basis.tensorProduct.eq_1 ๐ Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {S : Type u_2} {M : Type u_3} {N : Type u_4} {ฮน : Type u_5} {ฮบ : Type u_6} [CommSemiring R] [Semiring S] [Algebra R S] [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M] [AddCommMonoid N] [Module R N] (b : Module.Basis ฮน S M) (c : Module.Basis ฮบ R N) : b.tensorProduct c = Finsupp.basisSingleOne.map (TensorProduct.AlgebraTensorModule.congr b.repr c.repr โชโซโ (finsuppTensorFinsupp R S S R ฮน ฮบ โชโซโ Finsupp.lcongr (Equiv.refl (ฮน ร ฮบ)) (TensorProduct.AlgebraTensorModule.rid R S S))).symm - Module.Basis.dualBasis.eq_1 ๐ Mathlib.LinearAlgebra.Dual.Basis
{R : Type uR} {M : Type uM} {ฮน : Type uฮน} [CommSemiring R] [AddCommMonoid M] [Module R M] [DecidableEq ฮน] (b : Module.Basis ฮน R M) [Finite ฮน] : b.dualBasis = b.map b.toDualEquiv - Module.Basis.map.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.Basis
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : b.map f = { repr := f.symm โชโซโ b.repr } - Module.Basis.toMatrix_map ๐ Mathlib.LinearAlgebra.Matrix.Basis
{ฮน : Type u_1} {R : Type u_5} {M : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] (b : Module.Basis ฮน R M) (f : M โโ[R] N) (v : ฮน โ N) : (b.map f).toMatrix v = b.toMatrix (โf.symm โ v) - Module.Basis.det_map' ๐ Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ฮน : Type u_4} [DecidableEq ฮน] [Fintype ฮน] (b : Module.Basis ฮน R M) (f : M โโ[R] M') : (b.map f).det = b.det.compLinearMap โf.symm - Module.Basis.det_map ๐ Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ฮน : Type u_4} [DecidableEq ฮน] [Fintype ฮน] (b : Module.Basis ฮน R M) (f : M โโ[R] M') (v : ฮน โ M') : (b.map f).det v = b.det (โf.symm โ v) - LinearMap.BilinForm.dualBasis.eq_1 ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ฮน : Type u_9} [DecidableEq ฮน] [Finite ฮน] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Module.Basis ฮน K V) : B.dualBasis hB b = b.dualBasis.map (B.toDual hB).symm - PowerBasis.map_basis ๐ Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S โโ[R] S') : (pb.map e).basis = pb.basis.map e.toLinearEquiv - IntermediateField.powerBasisAux.eq_1 ๐ Mathlib.FieldTheory.IntermediateField.Adjoin.Basic
{K : Type u} [Field K] {L : Type u_3} [Field L] [Algebra K L] {x : L} (hx : IsIntegral K x) : IntermediateField.powerBasisAux hx = ((AdjoinRoot.powerBasis โฏ).basis.map (IntermediateField.adjoinRootEquivAdjoin K hx).toLinearEquiv).reindex (finCongr โฏ) - Orthonormal.mapLinearIsometryEquiv ๐ Mathlib.Analysis.InnerProductSpace.Orthonormal
{๐ : Type u_1} {E : Type u_2} [RCLike ๐] [SeminormedAddCommGroup E] [InnerProductSpace ๐ E] {ฮน : Type u_4} {E' : Type u_7} [SeminormedAddCommGroup E'] [InnerProductSpace ๐ E'] {v : Module.Basis ฮน ๐ E} (hv : Orthonormal ๐ โv) (f : E โโแตข[๐] E') : Orthonormal ๐ โ(v.map f.toLinearEquiv) - Orthonormal.map_equiv ๐ Mathlib.Analysis.InnerProductSpace.Orthonormal
{๐ : Type u_1} {E : Type u_2} [RCLike ๐] [SeminormedAddCommGroup E] [InnerProductSpace ๐ E] {ฮน : Type u_4} {ฮน' : Type u_5} {E' : Type u_7} [SeminormedAddCommGroup E'] [InnerProductSpace ๐ E'] {v : Module.Basis ฮน ๐ E} (hv : Orthonormal ๐ โv) {v' : Module.Basis ฮน' ๐ E'} (hv' : Orthonormal ๐ โv') (e : ฮน โ ฮน') : v.map (hv.equiv hv' e).toLinearEquiv = v'.reindex e.symm - PiLp.basisFun_map ๐ Mathlib.Analysis.Normed.Lp.PiLp
(p : ENNReal) (๐ : Type u_1) (ฮน : Type u_2) [Finite ฮน] [Ring ๐] : (PiLp.basisFun p ๐ ฮน).map (WithLp.linearEquiv p ๐ (ฮน โ ๐)) = Pi.basisFun ๐ ฮน - PiLp.basisFun_eq_pi_basisFun ๐ Mathlib.Analysis.Normed.Lp.PiLp
(p : ENNReal) (๐ : Type u_1) (ฮน : Type u_2) [Finite ฮน] [Ring ๐] : PiLp.basisFun p ๐ ฮน = (Pi.basisFun ๐ ฮน).map (WithLp.linearEquiv p ๐ (ฮน โ ๐)).symm - OrthonormalBasis.toBasis_map ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) : (b.map L).toBasis = b.toBasis.map L.toLinearEquiv - Pi.orthonormalBasis.toBasis ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮท : Type u_7} [Fintype ฮท] {ฮน : ฮท โ Type u_8} [(i : ฮท) โ Fintype (ฮน i)] {๐ : Type u_9} [RCLike ๐] {E : ฮท โ Type u_10} [(i : ฮท) โ NormedAddCommGroup (E i)] [(i : ฮท) โ InnerProductSpace ๐ (E i)] (B : (i : ฮท) โ OrthonormalBasis (ฮน i) ๐ (E i)) : (Pi.orthonormalBasis B).toBasis = (Pi.basis fun i => (B i).toBasis).map (WithLp.linearEquiv 2 ๐ ((j : ฮท) โ E j)).symm - Module.Basis.parallelepiped_map ๐ Mathlib.MeasureTheory.Measure.Haar.OfBasis
{ฮน : Type u_1} {E : Type u_3} {F : Type u_4} [Fintype ฮน] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace โ E] [NormedSpace โ F] (b : Module.Basis ฮน โ E) (e : E โโ[โ] F) : (b.map e).parallelepiped = TopologicalSpace.PositiveCompacts.map โe โฏ โฏ b.parallelepiped - Module.Basis.map_addHaar ๐ Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
{ฮน : Type u_1} {E : Type u_2} {F : Type u_3} [Fintype ฮน] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace โ E] [NormedSpace โ F] [MeasurableSpace E] [MeasurableSpace F] [BorelSpace E] [BorelSpace F] [SecondCountableTopology F] [SigmaCompactSpace F] (b : Module.Basis ฮน โ E) (f : E โL[โ] F) : MeasureTheory.Measure.map (โf) b.addHaar = (b.map f.toLinearEquiv).addHaar - ZSpan.map_fundamentalDomain ๐ Mathlib.Algebra.Module.ZLattice.Basic
{E : Type u_1} {ฮน : Type u_2} {K : Type u_3} [NormedField K] [NormedAddCommGroup E] [NormedSpace K E] (b : Module.Basis ฮน K E) [LinearOrder K] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace K F] (f : E โโ[K] F) : โf '' ZSpan.fundamentalDomain b = ZSpan.fundamentalDomain (b.map f) - ZSpan.map ๐ Mathlib.Algebra.Module.ZLattice.Basic
{E : Type u_1} {ฮน : Type u_2} {K : Type u_3} [NormedField K] [NormedAddCommGroup E] [NormedSpace K E] (b : Module.Basis ฮน K E) {F : Type u_4} [AddCommGroup F] [Module K F] (f : E โโ[K] F) : Submodule.map (LinearEquiv.restrictScalars โค f) (Submodule.span โค (Set.range โb)) = Submodule.span โค (Set.range โ(b.map f)) - Module.Basis.ofZLatticeBasis_comap ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] [LinearOrder K] [IsStrictOrderedRing K] [HasSolidNorm K] [FloorRing K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] [FiniteDimensional K E] [ProperSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] [FiniteDimensional K F] [ProperSpace F] (L : Submodule โค E) [DiscreteTopology โฅL] [IsZLattice K L] (e : F โL[K] E) {ฮน : Type u_4} (b : Module.Basis ฮน โค โฅL) : Module.Basis.ofZLatticeBasis K (ZLattice.comap K L โe.toLinearEquiv) (Module.Basis.ofZLatticeComap K L e.toLinearEquiv b) = (Module.Basis.ofZLatticeBasis K L b).map e.symm.toLinearEquiv - Module.Basis.ofZLatticeComap.eq_1 ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule โค E) (e : F โโ[K] E) {ฮน : Type u_4} (b : Module.Basis ฮน โค โฅL) : Module.Basis.ofZLatticeComap K L e b = b.map (ZLattice.comap_equiv K L e) - Module.Basis.orientation_map ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ฮน : Type u_4} [Fintype ฮน] [DecidableEq ฮน] (e : Module.Basis ฮน R M) (f : M โโ[R] N) : (e.map f).orientation = (Orientation.map ฮน f) e.orientation - Module.Basis.orientation_comp_linearEquiv_eq_iff_det_pos ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [DecidableEq ฮน] (e : Module.Basis ฮน R M) (f : M โโ[R] M) : (e.map f).orientation = e.orientation โ 0 < LinearMap.det โf - Module.Basis.orientation_comp_linearEquiv_eq_neg_iff_det_neg ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [DecidableEq ฮน] (e : Module.Basis ฮน R M) (f : M โโ[R] M) : (e.map f).orientation = -e.orientation โ LinearMap.det โf < 0 - Algebra.SubmersivePresentation.basisDeriv.eq_1 ๐ Mathlib.RingTheory.Extension.Presentation.Submersive
{R : Type u} {S : Type v} {ฮน : Type w} {ฯ : Type t} [CommRing R] [CommRing S] [Algebra R S] [Finite ฯ] (P : Algebra.SubmersivePresentation R S ฮน ฯ) : P.basisDeriv = (Pi.basisFun S ฯ).map P.aevalDifferentialEquiv - Algebra.SubmersivePresentation.basisCotangent.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} {ฮน : Type u_3} {ฯ : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Finite ฯ] (P : Algebra.SubmersivePresentation R S ฮน ฯ) : P.basisCotangent = P.basisDeriv.map P.cotangentEquiv.symm - PeriodPair.latticeBasis.eq_1 ๐ Mathlib.Analysis.SpecialFunctions.Elliptic.Weierstrass
(L : PeriodPair) : L.latticeBasis = (Module.Basis.span โฏ).map (LinearEquiv.ofEq (Submodule.span โค (Set.range ![L.ฯโ, L.ฯโ])) L.lattice โฏ) - Subalgebra.LinearDisjoint.basisOfBasisRight.eq_1 ๐ Mathlib.RingTheory.LinearDisjoint
{R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] {A B : Subalgebra R S} (H : A.LinearDisjoint B) (H' : A โ B = โค) {ฮน : Type u_1} (b : Module.Basis ฮน R โฅB) : H.basisOfBasisRight H' b = (Module.Basis.baseChange (โฅA) b).map (H.mulMapLeftOfSupEqTop H').toLinearEquiv - Trivialization.basisAt.eq_1 ๐ Mathlib.Geometry.Manifold.VectorBundle.LocalFrame
{๐ : Type u_1} [NontriviallyNormedField ๐] {M : Type u_4} [TopologicalSpace M] {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ๐ F] {V : M โ Type u_6} [TopologicalSpace (Bundle.TotalSpace F V)] [(x : M) โ AddCommGroup (V x)] [(x : M) โ Module ๐ (V x)] [(x : M) โ TopologicalSpace (V x)] [FiberBundle F V] [VectorBundle ๐ F V] {ฮน : Type u_7} {x : M} (e : Trivialization F Bundle.TotalSpace.proj) [MemTrivializationAtlas e] (b : Module.Basis ฮน ๐ F) (hx : x โ e.baseSet) : e.basisAt b hx = b.map (Trivialization.linearEquivAt ๐ e x hx).symm - Basis.piTensorProduct.eq_1 ๐ Mathlib.LinearAlgebra.PiTensorProduct.Basis
{ฮน : Type u_1} {R : Type u_2} {M : ฮน โ Type u_3} {ฮบ : ฮน โ Type u_4} [CommSemiring R] [(i : ฮน) โ AddCommMonoid (M i)] [(i : ฮน) โ Module R (M i)] [Finite ฮน] (b : (i : ฮน) โ Module.Basis (ฮบ i) R (M i)) : Basis.piTensorProduct b = Finsupp.basisSingleOne.map (((PiTensorProduct.congr fun i => (b i).repr).trans PiTensorProduct.ofFinsuppEquiv).trans (Finsupp.lcongr (Equiv.refl ((i : ฮน) โ ฮบ i)) (PiTensorProduct.constantBaseRingEquiv ฮน R).toLinearEquiv)).symm - Ideal.basisSpanSingleton.eq_1 ๐ Mathlib.RingTheory.Ideal.Basis
{ฮน : Type u_1} {R : Type u_2} {S : Type u_3} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S] (b : Module.Basis ฮน R S) {x : S} (hx : x โ 0) : Ideal.basisSpanSingleton b hx = b.map (((LinearEquiv.ofInjective (LinearMap.mulLeft R x) โฏ).trans (LinearEquiv.ofEq (LinearMap.range (LinearMap.mulLeft R x)) (Submodule.restrictScalars R (Ideal.span {x})) โฏ)).trans (LinearEquiv.restrictScalars R (Submodule.restrictScalarsEquiv R S S (Ideal.span {x})))) - NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq ๐ Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic
(K : Type u_1) [Field K] [NumberField K] : (NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis K).toBasis.map (NumberField.mixedEmbedding.euclidean.toMixed K).toLinearEquiv = NumberField.mixedEmbedding.stdBasis K - NumberField.Units.basisUnitLattice.eq_1 ๐ Mathlib.NumberTheory.NumberField.Units.DirichletTheorem
(K : Type u_1) [Field K] [NumberField K] : NumberField.Units.basisUnitLattice K = (NumberField.Units.basisModTorsion K).map (NumberField.Units.logEmbeddingEquiv K)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c