Loogle!
Result
Found 8 declarations mentioning Module.Ray.map.
- Module.Ray.map_refl π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] : Module.Ray.map (LinearEquiv.refl R M) = Equiv.refl (Module.Ray R M) - Module.Ray.map π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (e : M ββ[R] N) : Module.Ray R M β Module.Ray R N - Module.Ray.map_symm π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (e : M ββ[R] N) : (Module.Ray.map e).symm = Module.Ray.map e.symm - Module.Ray.map_neg π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (f : M ββ[R] N) (v : Module.Ray R M) : (Module.Ray.map f) (-v) = -(Module.Ray.map f) v - Module.Ray.map_apply π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (e : M ββ[R] N) (v : M) (hv : v β 0) : (Module.Ray.map e) (rayOfNeZero R v hv) = rayOfNeZero R (e v) β― - Module.Ray.linearEquiv_smul_eq_map π Mathlib.LinearAlgebra.Ray
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] (e : M ββ[R] M) (v : Module.Ray R M) : e β’ v = (Module.Ray.map e) v - Orientation.reindex.eq_1 π Mathlib.LinearAlgebra.Orientation
(R : Type u_1) [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] (M : Type u_2) [AddCommMonoid M] [Module R M] {ΞΉ : Type u_4} {ΞΉ' : Type u_5} (e : ΞΉ β ΞΉ') : Orientation.reindex R M e = Module.Ray.map (AlternatingMap.domDomCongrβ R e) - Orientation.map.eq_1 π Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ΞΉ : Type u_4) (e : M ββ[R] N) : Orientation.map ΞΉ e = Module.Ray.map (AlternatingMap.domLCongr R R ΞΉ R e)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65