Loogle!
Result
Found 14 declarations mentioning Module.Relations.map.
- Module.Relations.map π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) : (relations.R ββ A) ββ[A] relations.G ββ A - Module.Relations.map.eq_1 π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) : relations.map = Finsupp.linearCombination A relations.relation - Module.Relations.map_single π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) (r : relations.R) : (relations.map funβ | r => 1) = relations.relation r - Module.Relations.Solution.Ο_comp_map π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (solution : relations.Solution M) : solution.Ο ββ relations.map = 0 - Module.Relations.toQuotient_map π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) : relations.toQuotient ββ relations.map = 0 - Module.Relations.Solution.Ο_comp_map_apply π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (solution : relations.Solution M) (x : relations.R ββ A) : solution.Ο (relations.map x) = 0 - Module.Relations.Solution.ofΟ' π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (Ο : (relations.G ββ A) ββ[A] M) (hΟ : Ο ββ relations.map = 0) : relations.Solution M - Module.Relations.Solution.IsPresentation.exact π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] {solution : relations.Solution M} (h : solution.IsPresentation) : Function.Exact βrelations.map βsolution.Ο - Module.Relations.Solution.ofΟ'.eq_1 π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (Ο : (relations.G ββ A) ββ[A] M) (hΟ : Ο ββ relations.map = 0) : Module.Relations.Solution.ofΟ' Ο hΟ = Module.Relations.Solution.ofΟ Ο β― - Module.Relations.toQuotient_map_apply π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) (x : relations.R ββ A) : relations.toQuotient (relations.map x) = 0 - Module.Relations.Solution.ofΟ'_Ο π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (Ο : (relations.G ββ A) ββ[A] M) (hΟ : Ο ββ relations.map = 0) : (Module.Relations.Solution.ofΟ' Ο hΟ).Ο = Ο - Module.Relations.range_map π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] (relations : Module.Relations A) : LinearMap.range relations.map = Submodule.span A (Set.range relations.relation) - Module.Relations.Solution.ofΟ'_var π Mathlib.Algebra.Module.Presentation.Basic
{A : Type u} [Ring A] {relations : Module.Relations A} {M : Type v} [AddCommGroup M] [Module A M] (Ο : (relations.G ββ A) ββ[A] M) (hΟ : Ο ββ relations.map = 0) (g : relations.G) : (Module.Relations.Solution.ofΟ' Ο hΟ).var g = Ο funβ | g => 1 - Algebra.Presentation.differentials.commββ π Mathlib.Algebra.Module.Presentation.Differentials
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (pres : Algebra.Presentation R S) : pres.toExtension.cotangentComplex ββ Algebra.Presentation.differentials.homβ pres = βpres.cotangentSpaceBasis.repr.symm ββ pres.differentialsRelations.map
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65