Loogle!
Result
Found 7 declarations mentioning ModuleCat.exteriorPower.map.
- ModuleCat.exteriorPower.map π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) (n : β) : M.exteriorPower n βΆ N.exteriorPower n - ModuleCat.exteriorPower.functor_map π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
(R : Type u) [CommRing R] (n : β) {Xβ Yβ : ModuleCat R} (f : Xβ βΆ Yβ) : (ModuleCat.exteriorPower.functor R n).map f = ModuleCat.exteriorPower.map f n - ModuleCat.exteriorPower.isoβ_hom_naturality π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 1) (ModuleCat.exteriorPower.isoβ N).hom = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom f - ModuleCat.exteriorPower.isoβ_hom_naturality π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 0) (ModuleCat.exteriorPower.isoβ N).hom = (ModuleCat.exteriorPower.isoβ M).hom - ModuleCat.exteriorPower.isoβ_hom_naturality_assoc π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) {Z : ModuleCat R} (h : N βΆ Z) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 1) (CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ N).hom h) = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom (CategoryTheory.CategoryStruct.comp f h) - ModuleCat.exteriorPower.isoβ_hom_naturality_assoc π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) {Z : ModuleCat R} (h : ModuleCat.of R R βΆ Z) : CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.map f 0) (CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ N).hom h) = CategoryTheory.CategoryStruct.comp (ModuleCat.exteriorPower.isoβ M).hom h - ModuleCat.exteriorPower.map_mk π Mathlib.Algebra.Category.ModuleCat.ExteriorPower
{R : Type u} [CommRing R] {M N : ModuleCat R} (f : M βΆ N) {n : β} (x : Fin n β βM) : (CategoryTheory.ConcreteCategory.hom (ModuleCat.exteriorPower.map f n)) (ModuleCat.exteriorPower.mk x) = ModuleCat.exteriorPower.mk (β(CategoryTheory.ConcreteCategory.hom f) β x)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65