Loogle!
Result
Found 4 declarations mentioning MulOpposite, Units and MulEquiv.
- Units.opEquiv ๐ Mathlib.Algebra.Group.Units.Opposite
{M : Type u_2} [Monoid M] : Mแตแตแตหฃ โ* Mหฃแตแตแต - Units.coe_unop_opEquiv ๐ Mathlib.Algebra.Group.Units.Opposite
{M : Type u_2} [Monoid M] (u : Mแตแตแตหฃ) : โ(MulOpposite.unop (Units.opEquiv u)) = MulOpposite.unop โu - Units.coe_opEquiv_symm ๐ Mathlib.Algebra.Group.Units.Opposite
{M : Type u_2} [Monoid M] (u : Mหฃแตแตแต) : โ(Units.opEquiv.symm u) = MulOpposite.op โ(MulOpposite.unop u) - Units.opEquiv.eq_1 ๐ Mathlib.Algebra.Group.Units.Opposite
{M : Type u_2} [Monoid M] : Units.opEquiv = { toFun := fun u => MulOpposite.op { val := MulOpposite.unop โu, inv := MulOpposite.unop โuโปยน, val_inv := โฏ, inv_val := โฏ }, invFun := fun X => MulOpposite.rec' (fun u => { val := MulOpposite.op โu, inv := MulOpposite.op โuโปยน, val_inv := โฏ, inv_val := โฏ }) X, left_inv := โฏ, right_inv := โฏ, map_mul' := โฏ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65