Loogle!
Result
Found 11 declarations mentioning Polynomial.C, Polynomial.roots, Multiset.map and Multiset.prod.
- Polynomial.roots_multiset_prod_X_sub_C π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] (s : Multiset R) : (Multiset.map (fun a => Polynomial.X - Polynomial.C a) s).prod.roots = s - Polynomial.prod_multiset_X_sub_C_of_monic_of_roots_card_eq π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] {p : Polynomial R} (hp : p.Monic) (hroots : p.roots.card = p.natDegree) : (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod = p - Polynomial.prod_multiset_X_sub_C_dvd π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] (p : Polynomial R) : (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod β£ p - Multiset.prod_X_sub_C_dvd_iff_le_roots π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] {p : Polynomial R} (hp : p β 0) (s : Multiset R) : (Multiset.map (fun a => Polynomial.X - Polynomial.C a) s).prod β£ p β s β€ p.roots - Polynomial.exists_prod_multiset_X_sub_C_mul π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] (p : Polynomial R) : β q, (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod * q = p β§ p.roots.card + q.natDegree = p.natDegree β§ q.roots = 0 - Polynomial.C_leadingCoeff_mul_prod_multiset_X_sub_C π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] {p : Polynomial R} (hroots : p.roots.card = p.natDegree) : Polynomial.C p.leadingCoeff * (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod = p - Polynomial.prod_multiset_root_eq_finset_root π Mathlib.Algebra.Polynomial.Roots
{R : Type u} [CommRing R] [IsDomain R] {p : Polynomial R} [DecidableEq R] : (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod = β a β p.roots.toFinset, (Polynomial.X - Polynomial.C a) ^ Polynomial.rootMultiplicity a p - Polynomial.eq_prod_roots_of_monic_of_splits_id π Mathlib.Algebra.Polynomial.Splits
{K : Type v} [Field K] {p : Polynomial K} (m : p.Monic) (hsplit : Polynomial.Splits (RingHom.id K) p) : p = (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod - Polynomial.eq_prod_roots_of_splits_id π Mathlib.Algebra.Polynomial.Splits
{K : Type v} [Field K] {p : Polynomial K} (hsplit : Polynomial.Splits (RingHom.id K) p) : p = Polynomial.C p.leadingCoeff * (Multiset.map (fun a => Polynomial.X - Polynomial.C a) p.roots).prod - Polynomial.eq_prod_roots_of_splits π Mathlib.Algebra.Polynomial.Splits
{K : Type v} {L : Type w} [Field K] [Field L] {p : Polynomial K} {i : K β+* L} (hsplit : Polynomial.Splits i p) : Polynomial.map i p = Polynomial.C (i p.leadingCoeff) * (Multiset.map (fun a => Polynomial.X - Polynomial.C a) (Polynomial.map i p).roots).prod - spectrum.exists_mem_of_not_isUnit_aeval_prod π Mathlib.FieldTheory.IsAlgClosed.Spectrum
{R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [IsDomain R] {p : Polynomial R} {a : A} (h : Β¬IsUnit ((Polynomial.aeval a) (Multiset.map (fun x => Polynomial.X - Polynomial.C x) p.roots).prod)) : β k β spectrum R a, Polynomial.eval k p = 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65