Loogle!
Result
Found 44 declarations mentioning MvPolynomial.IsHomogeneous.
- MvPolynomial.IsHomogeneous π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (Ο : MvPolynomial Ο R) (n : β) : Prop - MvPolynomial.isHomogeneous_X π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} (R : Type u_3) [CommSemiring R] (i : Ο) : (MvPolynomial.X i).IsHomogeneous 1 - MvPolynomial.IsHomogeneous.totalDegree_le π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) : Ο.totalDegree β€ n - MvPolynomial.isHomogeneous_of_totalDegree_zero π Mathlib.RingTheory.MvPolynomial.Homogeneous
(Ο : Type u_1) {R : Type u_3} [CommSemiring R] {p : MvPolynomial Ο R} : p.totalDegree = 0 β p.IsHomogeneous 0 - MvPolynomial.totalDegree_zero_iff_isHomogeneous π Mathlib.RingTheory.MvPolynomial.Homogeneous
(Ο : Type u_1) {R : Type u_3} [CommSemiring R] {p : MvPolynomial Ο R} : p.totalDegree = 0 β p.IsHomogeneous 0 - MvPolynomial.IsHomogeneous.eq_1 π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (Ο : MvPolynomial Ο R) (n : β) : Ο.IsHomogeneous n = MvPolynomial.IsWeightedHomogeneous 1 Ο n - MvPolynomial.isHomogeneous_zero π Mathlib.RingTheory.MvPolynomial.Homogeneous
(Ο : Type u_1) (R : Type u_3) [CommSemiring R] (n : β) : MvPolynomial.IsHomogeneous 0 n - MvPolynomial.isHomogeneous_one π Mathlib.RingTheory.MvPolynomial.Homogeneous
(Ο : Type u_1) (R : Type u_3) [CommSemiring R] : MvPolynomial.IsHomogeneous 1 0 - MvPolynomial.IsHomogeneous.coeff_eq_zero π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) {d : Ο ββ β} (hd : d.degree β n) : MvPolynomial.coeff d Ο = 0 - MvPolynomial.isHomogeneous_X_pow π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (i : Ο) (n : β) : (MvPolynomial.X i ^ n).IsHomogeneous n - MvPolynomial.IsHomogeneous.prod π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {ΞΉ : Type u_5} (s : Finset ΞΉ) (Ο : ΞΉ β MvPolynomial Ο R) (n : ΞΉ β β) (h : β i β s, (Ο i).IsHomogeneous (n i)) : (β i β s, Ο i).IsHomogeneous (β i β s, n i) - MvPolynomial.IsHomogeneous.sum π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {ΞΉ : Type u_5} (s : Finset ΞΉ) (Ο : ΞΉ β MvPolynomial Ο R) (n : β) (h : β i β s, (Ο i).IsHomogeneous n) : (β i β s, Ο i).IsHomogeneous n - MvPolynomial.IsHomogeneous.totalDegree π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) (h : Ο β 0) : Ο.totalDegree = n - MvPolynomial.IsHomogeneous.pow π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {m : β} (hΟ : Ο.IsHomogeneous m) (n : β) : (Ο ^ n).IsHomogeneous (m * n) - MvPolynomial.IsHomogeneous.inj_right π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {m n : β} (hm : Ο.IsHomogeneous m) (hn : Ο.IsHomogeneous n) (hΟ : Ο β 0) : m = n - MvPolynomial.isHomogeneous_C π Mathlib.RingTheory.MvPolynomial.Homogeneous
(Ο : Type u_1) {R : Type u_3} [CommSemiring R] (r : R) : (MvPolynomial.C r).IsHomogeneous 0 - MvPolynomial.IsHomogeneous.add π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) (hΟ : Ο.IsHomogeneous n) : (Ο + Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.neg π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) : (-Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.mul π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο Ο : MvPolynomial Ο R} {m n : β} (hΟ : Ο.IsHomogeneous m) (hΟ : Ο.IsHomogeneous n) : (Ο * Ο).IsHomogeneous (m + n) - MvPolynomial.IsHomogeneous.sub π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] {Ο Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) (hΟ : Ο.IsHomogeneous n) : (Ο - Ο).IsHomogeneous n - MvPolynomial.isHomogeneous_C_mul_X π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (r : R) (i : Ο) : (MvPolynomial.C r * MvPolynomial.X i).IsHomogeneous 1 - MvPolynomial.IsHomogeneous.C_mul π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {m : β} (hΟ : Ο.IsHomogeneous m) (r : R) : (MvPolynomial.C r * Ο).IsHomogeneous m - MvPolynomial.IsHomogeneous.map π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) (f : R β+* S) : ((MvPolynomial.map f) Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.rename_isHomogeneous π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} {f : Ο β Ο} (h : Ο.IsHomogeneous n) : ((MvPolynomial.rename f) Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.rename_isHomogeneous_iff π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} {f : Ο β Ο} (hf : Function.Injective f) : ((MvPolynomial.rename f) Ο).IsHomogeneous n β Ο.IsHomogeneous n - MvPolynomial.IsHomogeneous.evalβ π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} {m n : β} (hΟ : Ο.IsHomogeneous m) (f : R β+* MvPolynomial Ο S) (g : Ο β MvPolynomial Ο S) (hf : β (r : R), (f r).IsHomogeneous 0) (hg : β (i : Ο), (g i).IsHomogeneous n) : (MvPolynomial.evalβ f g Ο).IsHomogeneous (n * m) - MvPolynomial.isHomogeneous_C_mul_X_pow π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (r : R) (i : Ο) (n : β) : (MvPolynomial.C r * MvPolynomial.X i ^ n).IsHomogeneous n - MvPolynomial.mem_homogeneousSubmodule π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (n : β) (p : MvPolynomial Ο R) : p β MvPolynomial.homogeneousSubmodule Ο R n β p.IsHomogeneous n - MvPolynomial.IsHomogeneous.aeval π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} {m n : β} [Algebra R S] (hΟ : Ο.IsHomogeneous m) (g : Ο β MvPolynomial Ο S) (hg : β (i : Ο), (g i).IsHomogeneous n) : ((MvPolynomial.aeval g) Ο).IsHomogeneous (n * m) - MvPolynomial.isHomogeneous_monomial π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {d : Ο ββ β} (r : R) {n : β} (hn : d.degree = n) : ((MvPolynomial.monomial d) r).IsHomogeneous n - MvPolynomial.IsHomogeneous.eq_zero_of_forall_eval_eq_zero π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] [IsDomain R] [Infinite R] {F : MvPolynomial Ο R} {n : β} (hF : F.IsHomogeneous n) (h : β (r : Ο β R), (MvPolynomial.eval r) F = 0) : F = 0 - MvPolynomial.IsHomogeneous.eq_zero_of_forall_eval_eq_zero_of_le_card π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] [IsDomain R] {F : MvPolynomial Ο R} {n : β} (hF : F.IsHomogeneous n) (h : β (r : Ο β R), (MvPolynomial.eval r) F = 0) (hnR : βn β€ Cardinal.mk R) : F = 0 - MvPolynomial.homogeneousComponent_isHomogeneous π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] (n : β) (Ο : MvPolynomial Ο R) : ((MvPolynomial.homogeneousComponent n) Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.funext π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] [IsDomain R] [Infinite R] {F G : MvPolynomial Ο R} {n : β} (hF : F.IsHomogeneous n) (hG : G.IsHomogeneous n) (h : β (r : Ο β R), (MvPolynomial.eval r) F = (MvPolynomial.eval r) G) : F = G - MvPolynomial.IsHomogeneous.funext_of_le_card π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_5} {Ο : Type u_6} [CommRing R] [IsDomain R] {F G : MvPolynomial Ο R} {n : β} (hF : F.IsHomogeneous n) (hG : G.IsHomogeneous n) (h : β (r : Ο β R), (MvPolynomial.eval r) F = (MvPolynomial.eval r) G) (hnR : βn β€ Cardinal.mk R) : F = G - MvPolynomial.IsHomogeneous.coeff_isHomogeneous_of_optionEquivLeft_symm π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} [CommSemiring R] {n : β} [hΟ : Finite Ο] {p : Polynomial (MvPolynomial Ο R)} (hp : ((MvPolynomial.optionEquivLeft R Ο).symm p).IsHomogeneous n) (i j : β) (h : i + j = n) : (p.coeff i).IsHomogeneous j - MvPolynomial.IsHomogeneous.finSuccEquiv_coeff_isHomogeneous π Mathlib.RingTheory.MvPolynomial.Homogeneous
{R : Type u_3} [CommSemiring R] {N : β} {Ο : MvPolynomial (Fin (N + 1)) R} {n : β} (hΟ : Ο.IsHomogeneous n) (i j : β) (h : i + j = n) : (((MvPolynomial.finSuccEquiv R N) Ο).coeff i).IsHomogeneous j - Matrix.charpoly.univ_coeff_isHomogeneous π Mathlib.LinearAlgebra.Matrix.Charpoly.Univ
(R : Type u_1) (n : Type u_3) [CommRing R] [Fintype n] [DecidableEq n] (i j : β) (h : i + j = Fintype.card n) : ((Matrix.charpoly.univ R n).coeff i).IsHomogeneous j - Matrix.charpoly.optionEquivLeft_symm_univ_isHomogeneous π Mathlib.LinearAlgebra.Matrix.Charpoly.Univ
(R : Type u_1) (n : Type u_3) [CommRing R] [Fintype n] [DecidableEq n] : ((MvPolynomial.optionEquivLeft R (n Γ n)).symm (Matrix.charpoly.univ R n)).IsHomogeneous (Fintype.card n) - Matrix.toMvPolynomial_isHomogeneous π Mathlib.Algebra.Module.LinearMap.Polynomial
{m : Type u_1} {n : Type u_2} {R : Type u_4} [Fintype n] [CommSemiring R] (M : Matrix m n R) (i : m) : (M.toMvPolynomial i).IsHomogeneous 1 - LinearMap.toMvPolynomial_isHomogeneous π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {Mβ : Type u_2} {Mβ : Type u_3} {ΞΉβ : Type u_4} {ΞΉβ : Type u_5} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Fintype ΞΉβ] [Finite ΞΉβ] [DecidableEq ΞΉβ] (bβ : Basis ΞΉβ R Mβ) (bβ : Basis ΞΉβ R Mβ) (f : Mβ ββ[R] Mβ) (i : ΞΉβ) : (LinearMap.toMvPolynomial bβ bβ f i).IsHomogeneous 1 - LinearMap.polyCharpoly_coeff_isHomogeneous π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {L : Type u_2} {M : Type u_3} {ΞΉ : Type u_5} [CommRing R] [AddCommGroup L] [Module R L] [AddCommGroup M] [Module R M] (Ο : L ββ[R] Module.End R M) [Fintype ΞΉ] [DecidableEq ΞΉ] [Module.Free R M] [Module.Finite R M] (b : Basis ΞΉ R L) (i j : β) (hij : i + j = Module.finrank R M) [Nontrivial R] : ((Ο.polyCharpoly b).coeff i).IsHomogeneous j - MvPolynomial.IsHomogeneous.pderiv π Mathlib.RingTheory.MvPolynomial.EulerIdentity
{R : Type u_1} {Ο : Type u_2} [CommSemiring R] {Ο : MvPolynomial Ο R} {n : β} {i : Ο} (h : Ο.IsHomogeneous n) : ((MvPolynomial.pderiv i) Ο).IsHomogeneous (n - 1) - MvPolynomial.IsHomogeneous.sum_X_mul_pderiv π Mathlib.RingTheory.MvPolynomial.EulerIdentity
{R : Type u_1} {Ο : Type u_2} [CommSemiring R] {Ο : MvPolynomial Ο R} [Fintype Ο] {n : β} (h : Ο.IsHomogeneous n) : β i, MvPolynomial.X i * (MvPolynomial.pderiv i) Ο = n β’ Ο
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 4cb993b