Loogle!
Result
Found 107 declarations mentioning MvPolynomial.map.
- MvPolynomial.map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) : MvPolynomial Ο R β+* MvPolynomial Ο Sβ - MvPolynomial.algebraMap_def π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u_2} {S : Type u_3} {Ο : Type u_4} [CommSemiring R] [CommSemiring S] [Algebra R S] : algebraMap (MvPolynomial Ο R) (MvPolynomial Ο S) = MvPolynomial.map (algebraMap R S) - MvPolynomial.map_id π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Ο : Type u_1} [CommSemiring R] (p : MvPolynomial Ο R) : (MvPolynomial.map (RingHom.id R)) p = p - MvPolynomial.map_X π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (n : Ο) : (MvPolynomial.map f) (MvPolynomial.X n) = MvPolynomial.X n - MvPolynomial.constantCoeff_comp_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) : MvPolynomial.constantCoeff.comp (MvPolynomial.map f) = f.comp MvPolynomial.constantCoeff - MvPolynomial.support_map_subset π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (p : MvPolynomial Ο R) : ((MvPolynomial.map f) p).support β p.support - MvPolynomial.map_injective π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (hf : Function.Injective βf) : Function.Injective β(MvPolynomial.map f) - MvPolynomial.map_surjective π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (hf : Function.Surjective βf) : Function.Surjective β(MvPolynomial.map f) - MvPolynomial.map_injective_iff π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) : Function.Injective β(MvPolynomial.map f) β Function.Injective βf - MvPolynomial.map_surjective_iff π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) : Function.Surjective β(MvPolynomial.map f) β Function.Surjective βf - MvPolynomial.coeff_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (p : MvPolynomial Ο R) (m : Ο ββ β) : MvPolynomial.coeff m ((MvPolynomial.map f) p) = f (MvPolynomial.coeff m p) - MvPolynomial.coeffs_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (p : MvPolynomial Ο R) [DecidableEq Sβ] : ((MvPolynomial.map f) p).coeffs β Finset.image (βf) p.coeffs - MvPolynomial.support_map_of_injective π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (p : MvPolynomial Ο R) {f : R β+* Sβ} (hf : Function.Injective βf) : ((MvPolynomial.map f) p).support = p.support - MvPolynomial.evalβ_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] [CommSemiring Sβ] (f : R β+* Sβ) (g : Ο β Sβ) (Ο : Sβ β+* Sβ) (p : MvPolynomial Ο R) : MvPolynomial.evalβ Ο g ((MvPolynomial.map f) p) = MvPolynomial.evalβ (Ο.comp f) g p - MvPolynomial.coe_coeffs_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (p : MvPolynomial Ο R) : β((MvPolynomial.map f) p).coeffs β βf '' βp.coeffs - MvPolynomial.mem_range_map_iff_coeffs_subset π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] {f : R β+* Sβ} {x : MvPolynomial Ο Sβ} : x β Set.range β(MvPolynomial.map f) β βx.coeffs β Set.range βf - MvPolynomial.eval_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (g : Ο β Sβ) (p : MvPolynomial Ο R) : (MvPolynomial.eval g) ((MvPolynomial.map f) p) = MvPolynomial.evalβ f g p - MvPolynomial.evalβ_eq_eval_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (g : Ο β Sβ) (p : MvPolynomial Ο R) : MvPolynomial.evalβ f g p = (MvPolynomial.eval g) ((MvPolynomial.map f) p) - MvPolynomial.mapAlgHom.eq_1 π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] [CommSemiring Sβ] [Algebra R Sβ] [Algebra R Sβ] (f : Sβ ββ[R] Sβ) : MvPolynomial.mapAlgHom f = { toRingHom := MvPolynomial.map βf, commutes' := β― } - MvPolynomial.map_ofNat π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (n : β) [n.AtLeastTwo] : (MvPolynomial.map f) (OfNat.ofNat n) = OfNat.ofNat n - MvPolynomial.evalβ_map_comp_C π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] {ΞΉ : Type u_2} (f : R β+* Sβ) (h : ΞΉ β MvPolynomial Ο Sβ) (p : MvPolynomial ΞΉ R) : MvPolynomial.evalβ ((MvPolynomial.map f).comp MvPolynomial.C) h p = MvPolynomial.evalβ MvPolynomial.C h ((MvPolynomial.map f) p) - MvPolynomial.evalβ_comp_right π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] {Sβ : Type u_2} [CommSemiring Sβ] (k : Sβ β+* Sβ) (f : R β+* Sβ) (g : Ο β Sβ) (p : MvPolynomial Ο R) : k (MvPolynomial.evalβ f g p) = MvPolynomial.evalβ k (βk β g) ((MvPolynomial.map f) p) - MvPolynomial.map_mapRange_eq_iff π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (g : Sβ β R) (hg : g 0 = 0) (Ο : MvPolynomial Ο Sβ) : (MvPolynomial.map f) (Finsupp.mapRange g hg Ο) = Ο β β (d : Ο ββ β), f (g (MvPolynomial.coeff d Ο)) = MvPolynomial.coeff d Ο - MvPolynomial.map_C π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (a : R) : (MvPolynomial.map f) (MvPolynomial.C a) = MvPolynomial.C (f a) - MvPolynomial.constantCoeff_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (Ο : MvPolynomial Ο R) : MvPolynomial.constantCoeff ((MvPolynomial.map f) Ο) = f (MvPolynomial.constantCoeff Ο) - MvPolynomial.map_leftInverse π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] {f : R β+* Sβ} {g : Sβ β+* R} (hf : Function.LeftInverse βf βg) : Function.LeftInverse β(MvPolynomial.map f) β(MvPolynomial.map g) - MvPolynomial.map_rightInverse π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] {f : R β+* Sβ} {g : Sβ β+* R} (hf : Function.RightInverse βf βg) : Function.RightInverse β(MvPolynomial.map f) β(MvPolynomial.map g) - MvPolynomial.evalβHom_map_hom π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] [CommSemiring Sβ] (f : R β+* Sβ) (g : Ο β Sβ) (Ο : Sβ β+* Sβ) (p : MvPolynomial Ο R) : (MvPolynomial.evalβHom Ο g) ((MvPolynomial.map f) p) = (MvPolynomial.evalβHom (Ο.comp f) g) p - MvPolynomial.map_eval π Mathlib.Algebra.MvPolynomial.Eval
{Sβ : Type v} {Ο : Type u_1} [CommSemiring Sβ] {Sβ : Type u_2} [CommSemiring Sβ] (q : Sβ β+* Sβ) (g : Ο β Sβ) (p : MvPolynomial Ο Sβ) : q ((MvPolynomial.eval g) p) = (MvPolynomial.eval (βq β g)) ((MvPolynomial.map q) p) - MvPolynomial.C_dvd_iff_map_hom_eq_zero π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (q : R β+* Sβ) (r : R) (hr : β (r' : R), q r' = 0 β r β£ r') (Ο : MvPolynomial Ο R) : MvPolynomial.C r β£ Ο β (MvPolynomial.map q) Ο = 0 - MvPolynomial.map_map π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) [CommSemiring Sβ] (g : Sβ β+* Sβ) (p : MvPolynomial Ο R) : (MvPolynomial.map g) ((MvPolynomial.map f) p) = (MvPolynomial.map (g.comp f)) p - MvPolynomial.map_evalβ π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Sβ : Type x} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (g : Sβ β MvPolynomial Sβ R) (p : MvPolynomial Sβ R) : (MvPolynomial.map f) (MvPolynomial.evalβ MvPolynomial.C g p) = MvPolynomial.evalβ MvPolynomial.C (β(MvPolynomial.map f) β g) ((MvPolynomial.map f) p) - MvPolynomial.map_monomial π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) (s : Ο ββ β) (a : R) : (MvPolynomial.map f) ((MvPolynomial.monomial s) a) = (MvPolynomial.monomial s) (f a) - MvPolynomial.mapAlgHom_coe_ringHom π Mathlib.Algebra.MvPolynomial.Eval
{R : Type u} {Sβ : Type v} {Sβ : Type w} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] [CommSemiring Sβ] [Algebra R Sβ] [Algebra R Sβ] (f : Sβ ββ[R] Sβ) : β(MvPolynomial.mapAlgHom f) = MvPolynomial.map βf - MvPolynomial.map_comp_rename π Mathlib.Algebra.MvPolynomial.Rename
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} {S : Type u_5} [CommSemiring R] [CommSemiring S] (f : R β+* S) (g : Ο β Ο) : (MvPolynomial.map f).comp (MvPolynomial.rename g).toRingHom = (MvPolynomial.rename g).comp (MvPolynomial.map f) - MvPolynomial.map_rename π Mathlib.Algebra.MvPolynomial.Rename
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_4} {S : Type u_5} [CommSemiring R] [CommSemiring S] (f : R β+* S) (g : Ο β Ο) (p : MvPolynomial Ο R) : (MvPolynomial.map f) ((MvPolynomial.rename g) p) = (MvPolynomial.rename g) ((MvPolynomial.map f) p) - MvPolynomial.degrees_map_le π Mathlib.Algebra.MvPolynomial.Degrees
{R : Type u} {S : Type v} {Ο : Type u_1} [CommSemiring R] {p : MvPolynomial Ο R} [CommSemiring S] {f : R β+* S} : ((MvPolynomial.map f) p).degrees β€ p.degrees - MvPolynomial.degrees_map_of_injective π Mathlib.Algebra.MvPolynomial.Degrees
{R : Type u} {S : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring S] (p : MvPolynomial Ο R) {f : R β+* S} (hf : Function.Injective βf) : ((MvPolynomial.map f) p).degrees = p.degrees - MvPolynomial.vars_map π Mathlib.Algebra.MvPolynomial.Variables
{R : Type u} {S : Type v} {Ο : Type u_1} [CommSemiring R] (p : MvPolynomial Ο R) [CommSemiring S] (f : R β+* S) : ((MvPolynomial.map f) p).vars β p.vars - MvPolynomial.vars_map_of_injective π Mathlib.Algebra.MvPolynomial.Variables
{R : Type u} {S : Type v} {Ο : Type u_1} [CommSemiring R] (p : MvPolynomial Ο R) [CommSemiring S] {f : R β+* S} (hf : Function.Injective βf) : ((MvPolynomial.map f) p).vars = p.vars - MvPolynomial.mapAlgEquiv_apply π Mathlib.Algebra.MvPolynomial.Equiv
{R : Type u} (Ο : Type u_1) [CommSemiring R] {Aβ : Type u_2} {Aβ : Type u_3} [CommSemiring Aβ] [CommSemiring Aβ] [Algebra R Aβ] [Algebra R Aβ] (e : Aβ ββ[R] Aβ) (a : MvPolynomial Ο Aβ) : (MvPolynomial.mapAlgEquiv Ο e) a = (MvPolynomial.map βe) a - MvPolynomial.commAlgEquiv_C π Mathlib.Algebra.MvPolynomial.Equiv
{R : Type u_2} {Sβ : Type u_3} {Sβ : Type u_4} [CommSemiring R] (p : MvPolynomial Sβ R) : (MvPolynomial.commAlgEquiv R Sβ Sβ) (MvPolynomial.C p) = (MvPolynomial.map MvPolynomial.C) p - MvPolynomial.mapEquiv_apply π Mathlib.Algebra.MvPolynomial.Equiv
{Sβ : Type v} {Sβ : Type w} (Ο : Type u_1) [CommSemiring Sβ] [CommSemiring Sβ] (e : Sβ β+* Sβ) (a : MvPolynomial Ο Sβ) : (MvPolynomial.mapEquiv Ο e) a = (MvPolynomial.map βe) a - MvPolynomial.ker_map π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} {S : Type u_1} {Ο : Type v} [CommRing R] [CommRing S] (f : R β+* S) : RingHom.ker (MvPolynomial.map f) = Ideal.map MvPolynomial.C (RingHom.ker f) - MvPolynomial.mapRange_eq_map π Mathlib.RingTheory.MvPolynomial.Basic
(Ο : Type u) {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (p : MvPolynomial Ο R) (f : R β+* S) : Finsupp.mapRange βf β― p = (MvPolynomial.map f) p - MvPolynomial.aeval_map_algebraMap π Mathlib.RingTheory.MvPolynomial.Tower
{R : Type u_1} (A : Type u_2) {B : Type u_3} {Ο : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (x : Ο β B) (p : MvPolynomial Ο R) : (MvPolynomial.aeval x) ((MvPolynomial.map (algebraMap R A)) p) = (MvPolynomial.aeval x) p - MvPolynomial.algebraTensorAlgEquiv_tmul π Mathlib.RingTheory.TensorProduct.MvPolynomial
(R : Type u) [CommSemiring R] {Ο : Type u_1} (A : Type u_4) [CommSemiring A] [Algebra R A] (a : A) (p : MvPolynomial Ο R) : (MvPolynomial.algebraTensorAlgEquiv R A) (a ββ[R] p) = a β’ (MvPolynomial.map (algebraMap R A)) p - MvPolynomial.algebraTensorAlgEquiv_symm_map π Mathlib.RingTheory.TensorProduct.MvPolynomial
(R : Type u) [CommSemiring R] {Ο : Type u_1} (A : Type u_4) [CommSemiring A] [Algebra R A] (x : MvPolynomial Ο R) : (MvPolynomial.algebraTensorAlgEquiv R A).symm ((MvPolynomial.map (algebraMap R A)) x) = 1 ββ[R] x - MvPolynomial.exists_dvd_map_of_isAlgebraic π Mathlib.RingTheory.Algebraic.Integral
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [alg : Algebra.IsAlgebraic R S] {Ο : Type u_4} [NoZeroDivisors S] {f : MvPolynomial Ο S} (hf : f β 0) : β g, g β 0 β§ f β£ (MvPolynomial.map (algebraMap R S)) g - MvPolynomial.map_comp_C π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* S) : (MvPolynomial.map f).comp MvPolynomial.C = MvPolynomial.C.comp f - MvPolynomial.joinβ_comp_map π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) : MvPolynomial.joinβ.comp (MvPolynomial.map f) = MvPolynomial.bindβ f - MvPolynomial.bindβ_map π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring T] (f : S β+* MvPolynomial Ο T) (g : R β+* S) (Ο : MvPolynomial Ο R) : (MvPolynomial.bindβ f) ((MvPolynomial.map g) Ο) = (MvPolynomial.bindβ (f.comp g)) Ο - MvPolynomial.map_bindβ π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} {T : Type u_5} [CommSemiring R] [CommSemiring S] [CommSemiring T] (f : R β+* MvPolynomial Ο S) (g : S β+* T) (Ο : MvPolynomial Ο R) : (MvPolynomial.map g) ((MvPolynomial.bindβ f) Ο) = (MvPolynomial.bindβ ((MvPolynomial.map g).comp f)) Ο - MvPolynomial.joinβ_map π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) (Ο : MvPolynomial Ο R) : MvPolynomial.joinβ ((MvPolynomial.map f) Ο) = (MvPolynomial.bindβ f) Ο - MvPolynomial.map_bindβ π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* S) (g : Ο β MvPolynomial Ο R) (Ο : MvPolynomial Ο R) : (MvPolynomial.map f) ((MvPolynomial.bindβ g) Ο) = (MvPolynomial.bindβ fun i => (MvPolynomial.map f) (g i)) ((MvPolynomial.map f) Ο) - MvPolynomial.IsHomogeneous.map π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} {n : β} (hΟ : Ο.IsHomogeneous n) (f : R β+* S) : ((MvPolynomial.map f) Ο).IsHomogeneous n - MvPolynomial.IsHomogeneous.of_map π Mathlib.RingTheory.MvPolynomial.Homogeneous
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} {n : β} {f : R β+* S} (hf : Function.Injective βf) (h : ((MvPolynomial.map f) Ο).IsHomogeneous n) : Ο.IsHomogeneous n - MvPolynomial.map.eq_1 π Mathlib.LinearAlgebra.Matrix.Charpoly.Univ
{R : Type u} {Sβ : Type v} {Ο : Type u_1} [CommSemiring R] [CommSemiring Sβ] (f : R β+* Sβ) : MvPolynomial.map f = MvPolynomial.evalβHom (MvPolynomial.C.comp f) MvPolynomial.X - Matrix.charpoly.univ_map_map π Mathlib.LinearAlgebra.Matrix.Charpoly.Univ
{R : Type u_1} {S : Type u_2} (n : Type u_3) [CommRing R] [CommRing S] [Fintype n] [DecidableEq n] (f : R β+* S) : Polynomial.map (MvPolynomial.map f) (Matrix.charpoly.univ R n) = Matrix.charpoly.univ S n - Matrix.toMvPolynomial_map π Mathlib.Algebra.Module.LinearMap.Polynomial
{m : Type u_1} {n : Type u_2} {R : Type u_4} {S : Type u_5} [Fintype n] [CommSemiring R] [CommSemiring S] (f : R β+* S) (M : Matrix m n R) (i : m) : (M.map βf).toMvPolynomial i = (MvPolynomial.map f) (M.toMvPolynomial i) - LinearMap.toMvPolynomial_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {Mβ : Type u_2} {Mβ : Type u_3} {ΞΉβ : Type u_4} {ΞΉβ : Type u_5} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Fintype ΞΉβ] [Finite ΞΉβ] [DecidableEq ΞΉβ] (bβ : Module.Basis ΞΉβ R Mβ) (bβ : Module.Basis ΞΉβ R Mβ) (f : Mβ ββ[R] Mβ) (i : ΞΉβ) (A : Type u_6) [CommRing A] [Algebra R A] : LinearMap.toMvPolynomial (Algebra.TensorProduct.basis A bβ) (Algebra.TensorProduct.basis A bβ) (LinearMap.baseChange A f) i = (MvPolynomial.map (algebraMap R A)) (LinearMap.toMvPolynomial bβ bβ f i) - LinearMap.polyCharpolyAux_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {L : Type u_2} {M : Type u_3} {ΞΉ : Type u_5} {ΞΉM : Type u_7} [CommRing R] [AddCommGroup L] [Module R L] [AddCommGroup M] [Module R M] (Ο : L ββ[R] Module.End R M) [Fintype ΞΉ] [Fintype ΞΉM] [DecidableEq ΞΉ] [DecidableEq ΞΉM] (b : Module.Basis ΞΉ R L) (bβ : Module.Basis ΞΉM R M) (A : Type u_8) [CommRing A] [Algebra R A] : (LinearMap.tensorProduct R A M M ββ LinearMap.baseChange A Ο).polyCharpolyAux (Algebra.TensorProduct.basis A b) (Algebra.TensorProduct.basis A bβ) = Polynomial.map (MvPolynomial.map (algebraMap R A)) (Ο.polyCharpolyAux b bβ) - LinearMap.polyCharpoly_baseChange π Mathlib.Algebra.Module.LinearMap.Polynomial
{R : Type u_1} {L : Type u_2} {M : Type u_3} {ΞΉ : Type u_5} [CommRing R] [AddCommGroup L] [Module R L] [AddCommGroup M] [Module R M] (Ο : L ββ[R] Module.End R M) [Fintype ΞΉ] [DecidableEq ΞΉ] [Module.Free R M] [Module.Finite R M] (b : Module.Basis ΞΉ R L) (A : Type u_8) [CommRing A] [Algebra R A] : (LinearMap.tensorProduct R A M M ββ LinearMap.baseChange A Ο).polyCharpoly (Algebra.TensorProduct.basis A b) = Polynomial.map (MvPolynomial.map (algebraMap R A)) (Ο.polyCharpoly b) - MvPolynomial.pderiv_map π Mathlib.Algebra.MvPolynomial.PDeriv
{R : Type u} {Ο : Type v} [CommSemiring R] {S : Type u_1} [CommSemiring S] {Ο : R β+* S} {f : MvPolynomial Ο R} {i : Ο} : (MvPolynomial.pderiv i) ((MvPolynomial.map Ο) f) = (MvPolynomial.map Ο) ((MvPolynomial.pderiv i) f) - Algebra.Presentation.baseChange_relation π Mathlib.RingTheory.Extension.Presentation.Basic
{R : Type u} {S : Type v} {ΞΉ : Type w} {Ο : Type t} [CommRing R] [CommRing S] [Algebra R S] (T : Type u_1) [CommRing T] [Algebra R T] (P : Algebra.Presentation R S ΞΉ Ο) (i : Ο) : (Algebra.Presentation.baseChange T P).relation i = (MvPolynomial.map (algebraMap R T)) (P.relation i) - MvPolynomial.map_expand π Mathlib.Algebra.MvPolynomial.Expand
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* S) (p : β) (Ο : MvPolynomial Ο R) : (MvPolynomial.map f) ((MvPolynomial.expand p) Ο) = (MvPolynomial.expand p) ((MvPolynomial.map f) Ο) - Polynomial.homogenize_map π Mathlib.Algebra.Polynomial.Homogenize
{R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] (f : R β+* S) (p : Polynomial R) (n : β) : (Polynomial.map f p).homogenize n = (MvPolynomial.map f) (p.homogenize n) - AlgebraicGeometry.AffineSpace.mapSpecMap π Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {R S : CommRingCat} (Ο : R βΆ S) : CategoryTheory.Arrow.mk (AlgebraicGeometry.AffineSpace.map n (AlgebraicGeometry.Spec.map Ο)) β CategoryTheory.Arrow.mk (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (MvPolynomial.map (CommRingCat.Hom.hom Ο)))) - AlgebraicGeometry.AffineSpace.map_SpecMap π Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {R S : CommRingCat} (Ο : R βΆ S) : AlgebraicGeometry.AffineSpace.map n (AlgebraicGeometry.Spec.map Ο) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.SpecIso n S).hom (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (MvPolynomial.map (CommRingCat.Hom.hom Ο)))) (AlgebraicGeometry.AffineSpace.SpecIso n R).inv) - AlgebraicGeometry.AffineSpace.map_Spec_map π Mathlib.AlgebraicGeometry.AffineSpace
{n : Type v} {R S : CommRingCat} (Ο : R βΆ S) : AlgebraicGeometry.AffineSpace.map n (AlgebraicGeometry.Spec.map Ο) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.AffineSpace.SpecIso n S).hom (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Spec.map (CommRingCat.ofHom (MvPolynomial.map (CommRingCat.Hom.hom Ο)))) (AlgebraicGeometry.AffineSpace.SpecIso n R).inv) - WeierstrassCurve.Jacobian.map_polynomial π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Jacobian R} (f : R β+* S) : (WeierstrassCurve.map W' f).toJacobian.polynomial = (MvPolynomial.map f) W'.polynomial - WeierstrassCurve.Jacobian.map_polynomialX π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Jacobian R} (f : R β+* S) : (WeierstrassCurve.map W' f).toJacobian.polynomialX = (MvPolynomial.map f) W'.polynomialX - WeierstrassCurve.Jacobian.map_polynomialY π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Jacobian R} (f : R β+* S) : (WeierstrassCurve.map W' f).toJacobian.polynomialY = (MvPolynomial.map f) W'.polynomialY - WeierstrassCurve.Jacobian.map_polynomialZ π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Jacobian R} (f : R β+* S) : (WeierstrassCurve.map W' f).toJacobian.polynomialZ = (MvPolynomial.map f) W'.polynomialZ - WeierstrassCurve.Jacobian.baseChange_polynomial π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Jacobian R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toJacobian.polynomial = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toJacobian.polynomial - WeierstrassCurve.Jacobian.baseChange_polynomialX π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Jacobian R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toJacobian.polynomialX = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toJacobian.polynomialX - WeierstrassCurve.Jacobian.baseChange_polynomialY π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Jacobian R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toJacobian.polynomialY = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toJacobian.polynomialY - WeierstrassCurve.Jacobian.baseChange_polynomialZ π Mathlib.AlgebraicGeometry.EllipticCurve.Jacobian.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Jacobian R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toJacobian.polynomialZ = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toJacobian.polynomialZ - WeierstrassCurve.Projective.map_polynomial π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Projective R} (f : R β+* S) : (WeierstrassCurve.map W' f).toProjective.polynomial = (MvPolynomial.map f) W'.polynomial - WeierstrassCurve.Projective.map_polynomialX π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Projective R} (f : R β+* S) : (WeierstrassCurve.map W' f).toProjective.polynomialX = (MvPolynomial.map f) W'.polynomialX - WeierstrassCurve.Projective.map_polynomialY π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Projective R} (f : R β+* S) : (WeierstrassCurve.map W' f).toProjective.polynomialY = (MvPolynomial.map f) W'.polynomialY - WeierstrassCurve.Projective.map_polynomialZ π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Projective R} (f : R β+* S) : (WeierstrassCurve.map W' f).toProjective.polynomialZ = (MvPolynomial.map f) W'.polynomialZ - WeierstrassCurve.Projective.baseChange_polynomial π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toProjective.polynomial = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toProjective.polynomial - WeierstrassCurve.Projective.baseChange_polynomialX π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toProjective.polynomialX = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toProjective.polynomialX - WeierstrassCurve.Projective.baseChange_polynomialY π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toProjective.polynomialY = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toProjective.polynomialY - WeierstrassCurve.Projective.baseChange_polynomialZ π Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Basic
{R : Type r} {S : Type s} {A : Type u} {B : Type v} [CommRing R] [CommRing S] [CommRing A] [CommRing B] {W' : WeierstrassCurve.Projective R} [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (f : A ββ[S] B) : (WeierstrassCurve.baseChange W' B).toProjective.polynomialZ = (MvPolynomial.map βf) (WeierstrassCurve.baseChange W' A).toProjective.polynomialZ - MvPolynomial.IsSymmetric.map π Mathlib.RingTheory.MvPolynomial.Symmetric.Defs
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] {Ο : MvPolynomial Ο R} (hΟ : Ο.IsSymmetric) (f : R β+* S) : ((MvPolynomial.map f) Ο).IsSymmetric - MvPolynomial.map_esymm π Mathlib.RingTheory.MvPolynomial.Symmetric.Defs
{S : Type u_4} (Ο : Type u_5) (R : Type u_6) [CommSemiring R] [CommSemiring S] [Fintype Ο] (n : β) (f : R β+* S) : (MvPolynomial.map f) (MvPolynomial.esymm Ο R n) = MvPolynomial.esymm Ο S n - MvPolynomial.map_hsymm π Mathlib.RingTheory.MvPolynomial.Symmetric.Defs
{S : Type u_4} (Ο : Type u_5) (R : Type u_6) [CommSemiring R] [CommSemiring S] [Fintype Ο] [DecidableEq Ο] (n : β) (f : R β+* S) : (MvPolynomial.map f) (MvPolynomial.hsymm Ο R n) = MvPolynomial.hsymm Ο S n - MvPowerSeries.trunc'_map π Mathlib.RingTheory.MvPowerSeries.Trunc
{Ο : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq Ο] [CommSemiring R] [CommSemiring S] (n : Ο ββ β) (f : R β+* S) (p : MvPowerSeries Ο R) : (MvPowerSeries.trunc' S n) ((MvPowerSeries.map f) p) = (MvPolynomial.map f) ((MvPowerSeries.trunc' R n) p) - MvPowerSeries.trunc_map π Mathlib.RingTheory.MvPowerSeries.Trunc
{Ο : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq Ο] [CommSemiring R] [CommSemiring S] (n : Ο ββ β) (f : R β+* S) (p : MvPowerSeries Ο R) : (MvPowerSeries.trunc S n) ((MvPowerSeries.map f) p) = (MvPolynomial.map f) ((MvPowerSeries.trunc R n) p) - MvPolynomial.C_dvd_iff_zmod π Mathlib.FieldTheory.Finite.Polynomial
{Ο : Type u_1} (n : β) (Ο : MvPolynomial Ο β€) : MvPolynomial.C βn β£ Ο β (MvPolynomial.map (Int.castRingHom (ZMod n))) Ο = 0 - Algebra.Presentation.map_relationOfHasCoeffs π Mathlib.RingTheory.Extension.Presentation.Core
{R : Type u_1} {S : Type u_2} {ΞΉ : Type u_3} {Ο : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Presentation R S ΞΉ Ο} (Rβ : Type u_5) [CommRing Rβ] [Algebra Rβ R] [Algebra Rβ S] [IsScalarTower Rβ R S] [P.HasCoeffs Rβ] (r : Ο) : (MvPolynomial.map (algebraMap Rβ R)) (Algebra.Presentation.relationOfHasCoeffs Rβ r) = P.relation r - Algebra.Presentation.HasCoeffs.relation_mem_range_map π Mathlib.RingTheory.Extension.Presentation.Core
{R : Type u_1} {S : Type u_2} {ΞΉ : Type u_3} {Ο : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Presentation R S ΞΉ Ο} (Rβ : Type u_5) [CommRing Rβ] [Algebra Rβ R] [Algebra Rβ S] [IsScalarTower Rβ R S] [P.HasCoeffs Rβ] (x : Ο) : P.relation x β Set.range β(MvPolynomial.map (algebraMap Rβ R)) - map_wittPolynomial π Mathlib.RingTheory.WittVector.WittPolynomial
(p : β) {R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] (f : R β+* S) (n : β) : (MvPolynomial.map f) (wittPolynomial p R n) = wittPolynomial p S n - wittStructureInt.eq_1 π Mathlib.RingTheory.WittVector.StructurePolynomial
(p : β) {idx : Type u_2} [hp : Fact (Nat.Prime p)] (Ξ¦ : MvPolynomial idx β€) (n : β) : wittStructureInt p Ξ¦ n = Finsupp.mapRange Rat.num wittStructureInt._proof_1 (wittStructureRat p ((MvPolynomial.map (Int.castRingHom β)) Ξ¦) n) - map_wittStructureInt π Mathlib.RingTheory.WittVector.StructurePolynomial
(p : β) {idx : Type u_2} [hp : Fact (Nat.Prime p)] (Ξ¦ : MvPolynomial idx β€) (n : β) : (MvPolynomial.map (Int.castRingHom β)) (wittStructureInt p Ξ¦ n) = wittStructureRat p ((MvPolynomial.map (Int.castRingHom β)) Ξ¦) n - witt_structure_prop π Mathlib.RingTheory.WittVector.StructurePolynomial
(p : β) {R : Type u_1} {idx : Type u_2} [CommRing R] [hp : Fact (Nat.Prime p)] (Ξ¦ : MvPolynomial idx β€) (n : β) : (MvPolynomial.aeval fun i => (MvPolynomial.map (Int.castRingHom R)) (wittStructureInt p Ξ¦ i)) (wittPolynomial p β€ n) = (MvPolynomial.aeval fun i => (MvPolynomial.rename (Prod.mk i)) (wittPolynomial p R n)) Ξ¦ - bindβ_rename_expand_wittPolynomial π Mathlib.RingTheory.WittVector.StructurePolynomial
{p : β} {idx : Type u_2} [hp : Fact (Nat.Prime p)] (Ξ¦ : MvPolynomial idx β€) (n : β) (IH : β m < n + 1, (MvPolynomial.map (Int.castRingHom β)) (wittStructureInt p Ξ¦ m) = wittStructureRat p ((MvPolynomial.map (Int.castRingHom β)) Ξ¦) m) : (MvPolynomial.bindβ fun b => (MvPolynomial.rename fun i => (b, i)) ((MvPolynomial.expand p) (wittPolynomial p β€ n))) Ξ¦ = (MvPolynomial.bindβ fun i => (MvPolynomial.expand p) (wittStructureInt p Ξ¦ i)) (wittPolynomial p β€ n) - C_p_pow_dvd_bindβ_rename_wittPolynomial_sub_sum π Mathlib.RingTheory.WittVector.StructurePolynomial
{p : β} {idx : Type u_2} [hp : Fact (Nat.Prime p)] (Ξ¦ : MvPolynomial idx β€) (n : β) (IH : β m < n, (MvPolynomial.map (Int.castRingHom β)) (wittStructureInt p Ξ¦ m) = wittStructureRat p ((MvPolynomial.map (Int.castRingHom β)) Ξ¦) m) : MvPolynomial.C β(p ^ n) β£ (MvPolynomial.bindβ fun b => (MvPolynomial.rename fun i => (b, i)) (wittPolynomial p β€ n)) Ξ¦ - β i β Finset.range n, MvPolynomial.C (βp ^ i) * wittStructureInt p Ξ¦ i ^ p ^ (n - i) - WittVector.map_frobeniusPoly π Mathlib.RingTheory.WittVector.Frobenius
(p : β) [hp : Fact (Nat.Prime p)] (n : β) : (MvPolynomial.map (Int.castRingHom β)) (WittVector.frobeniusPoly p n) = WittVector.frobeniusPolyRat p n - WittVector.frobeniusPoly_zmod π Mathlib.RingTheory.WittVector.Frobenius
(p : β) [hp : Fact (Nat.Prime p)] (n : β) : (MvPolynomial.map (Int.castRingHom (ZMod p))) (WittVector.frobeniusPoly p n) = MvPolynomial.X n ^ p - Polynomial.map_map_freeMonic π Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] (n : β) (f : R β+* S) : Polynomial.map (MvPolynomial.map f) (Polynomial.freeMonic R n) = Polynomial.freeMonic S n - MvPolynomial.universalFactorizationMapPresentation_Ο' π Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) [CommRing R] (n m k : β) (hn : n = m + k) (f : TensorProduct R (MvPolynomial (Fin m) R) (MvPolynomial (Fin k) R)) : (MvPolynomial.universalFactorizationMapPresentation R n m k hn).Ο' f = (MvPolynomial.map MvPolynomial.C) ((MvPolynomial.tensorEquivSum R (Fin m) (Fin k) R) f) - MvPolynomial.ker_evalβHom_universalFactorizationMap π Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) [CommRing R] (n m k : β) (hn : n = m + k) : RingHom.ker (MvPolynomial.evalβHom (β(MvPolynomial.universalFactorizationMap R n m k hn)) (Sum.elim (fun x => MvPolynomial.X x ββ[R] 1) fun x => 1 ββ[R] MvPolynomial.X x)) = Ideal.span (Set.range fun i => MvPolynomial.C (MvPolynomial.X i) - (MvPolynomial.map MvPolynomial.C) ((MvPolynomial.tensorEquivSum R (Fin m) (Fin k) R) ((MvPolynomial.universalFactorizationMap R n m k hn) (MvPolynomial.X i)))) - MvPolynomial.universalFactorizationMapPresentation_relation π Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) [CommRing R] (n m k : β) (hn : n = m + k) (i : Fin n) : (MvPolynomial.universalFactorizationMapPresentation R n m k hn).relation i = MvPolynomial.C (MvPolynomial.X i) - (MvPolynomial.map MvPolynomial.C) ((MvPolynomial.tensorEquivSum R (Fin m) (Fin k) R) ((MvPolynomial.universalFactorizationMap R n m k hn) (MvPolynomial.X i))) - MvPolynomial.universalFactorizationMap_comp_map π Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
(R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (n m k : β) (hn : n = m + k) : (MvPolynomial.universalFactorizationMap S n m k hn).comp (MvPolynomial.map (algebraMap R S)) = (Algebra.TensorProduct.lift (Algebra.TensorProduct.includeLeft.comp (MvPolynomial.mapAlgHom (Algebra.ofId R S))) ((AlgHom.restrictScalars R Algebra.TensorProduct.includeRight).comp (MvPolynomial.mapAlgHom (Algebra.ofId R S))) β―).comp (MvPolynomial.universalFactorizationMap R n m k hn).toRingHom
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c