Loogle!
Result
Found 6 declarations mentioning MvPowerSeries.HasEval.map.
- MvPowerSeries.HasEval.map 📋 Mathlib.RingTheory.MvPowerSeries.Evaluation
{σ : Type u_1} {R : Type u_2} [CommRing R] [TopologicalSpace R] {S : Type u_3} [CommRing S] [TopologicalSpace S] {φ : R →+* S} (hφ : Continuous ⇑φ) {a : σ → R} (ha : MvPowerSeries.HasEval a) : MvPowerSeries.HasEval fun s => φ (a s) - MvPowerSeries.comp_aeval 📋 Mathlib.RingTheory.MvPowerSeries.Evaluation
{σ : Type u_1} {R : Type u_2} [CommRing R] [UniformSpace R] {S : Type u_3} [CommRing S] [UniformSpace S] {a : σ → S} [IsTopologicalSemiring R] [IsUniformAddGroup R] [IsUniformAddGroup S] [CompleteSpace S] [T2Space S] [IsTopologicalRing S] [IsLinearTopology S S] [Algebra R S] [ContinuousSMul R S] (ha : MvPowerSeries.HasEval a) {T : Type u_4} [CommRing T] [UniformSpace T] [IsUniformAddGroup T] [IsTopologicalRing T] [IsLinearTopology T T] [T2Space T] [Algebra R T] [ContinuousSMul R T] [CompleteSpace T] {ε : S →ₐ[R] T} (hε : Continuous ⇑ε) : ε.comp (MvPowerSeries.aeval ha) = MvPowerSeries.aeval ⋯ - MvPowerSeries.aeval_unique 📋 Mathlib.RingTheory.MvPowerSeries.Evaluation
{σ : Type u_1} {R : Type u_2} [CommRing R] [UniformSpace R] {S : Type u_3} [CommRing S] [UniformSpace S] [IsTopologicalSemiring R] [IsUniformAddGroup R] [IsUniformAddGroup S] [CompleteSpace S] [T2Space S] [IsTopologicalRing S] [IsLinearTopology S S] [Algebra R S] [ContinuousSMul R S] {ε : MvPowerSeries σ R →ₐ[R] S} (hε : Continuous ⇑ε) : MvPowerSeries.aeval ⋯ = ε - MvPowerSeries.comp_substAlgHom 📋 Mathlib.RingTheory.MvPowerSeries.Substitution
{σ : Type u_1} {R : Type u_3} [CommRing R] {τ : Type u_4} {S : Type u_5} [CommRing S] [Algebra R S] {a : σ → MvPowerSeries τ S} {T : Type u_6} [CommRing T] [UniformSpace T] [T2Space T] [CompleteSpace T] [IsUniformAddGroup T] [IsTopologicalRing T] [IsLinearTopology T T] [Algebra R T] {ε : MvPowerSeries τ S →ₐ[R] T} [UniformSpace R] [DiscreteUniformity R] [UniformSpace S] [DiscreteUniformity S] (ha : MvPowerSeries.HasSubst a) (hε : Continuous ⇑ε) : ε.comp (MvPowerSeries.substAlgHom ha) = MvPowerSeries.aeval ⋯ - MvPowerSeries.comp_subst_apply 📋 Mathlib.RingTheory.MvPowerSeries.Substitution
{σ : Type u_1} {R : Type u_3} [CommRing R] {τ : Type u_4} {S : Type u_5} [CommRing S] [Algebra R S] {a : σ → MvPowerSeries τ S} {T : Type u_6} [CommRing T] [UniformSpace T] [T2Space T] [CompleteSpace T] [IsUniformAddGroup T] [IsTopologicalRing T] [IsLinearTopology T T] [Algebra R T] {ε : MvPowerSeries τ S →ₐ[R] T} [UniformSpace R] [DiscreteUniformity R] [UniformSpace S] [DiscreteUniformity S] (ha : MvPowerSeries.HasSubst a) (hε : Continuous ⇑ε) (f : MvPowerSeries σ R) : ε (MvPowerSeries.subst a f) = (MvPowerSeries.aeval ⋯) f - MvPowerSeries.comp_subst 📋 Mathlib.RingTheory.MvPowerSeries.Substitution
{σ : Type u_1} {R : Type u_3} [CommRing R] {τ : Type u_4} {S : Type u_5} [CommRing S] [Algebra R S] {a : σ → MvPowerSeries τ S} {T : Type u_6} [CommRing T] [UniformSpace T] [T2Space T] [CompleteSpace T] [IsUniformAddGroup T] [IsTopologicalRing T] [IsLinearTopology T T] [Algebra R T] {ε : MvPowerSeries τ S →ₐ[R] T} [UniformSpace R] [DiscreteUniformity R] [UniformSpace S] [DiscreteUniformity S] (ha : MvPowerSeries.HasSubst a) (hε : Continuous ⇑ε) : ⇑ε ∘ MvPowerSeries.subst a = ⇑(MvPowerSeries.aeval ⋯)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65