Loogle!
Result
Found 130 declarations mentioning AddMonoid.toAddZeroClass, Nat.instAddMonoid, Nat and AddMonoidHom. Of these, 23 match your pattern(s).
- multiplesHom 📋 Mathlib.Algebra.Group.Nat.Hom
(M : Type u_1) [AddMonoid M] : M ≃ (ℕ →+ M) - multiplesAddHom 📋 Mathlib.Algebra.Group.Nat.Hom
(M : Type u_1) [AddCommMonoid M] : M ≃+ (ℕ →+ M) - multiplesAddHom.eq_1 📋 Mathlib.Algebra.Group.Nat.Hom
(M : Type u_1) [AddCommMonoid M] : multiplesAddHom M = { toEquiv := multiplesHom M, map_add' := ⋯ } - AddMonoidHom.ext_nat 📋 Mathlib.Algebra.Group.Nat.Hom
{A : Type u_2} [AddZeroClass A] {f g : ℕ →+ A} : f 1 = g 1 → f = g - AddMonoidHom.apply_nat 📋 Mathlib.Algebra.Group.Nat.Hom
{M : Type u_1} [AddMonoid M] (f : ℕ →+ M) (n : ℕ) : f n = n • f 1 - AddMonoidHom.ext_nat_iff 📋 Mathlib.Algebra.Group.Nat.Hom
{A : Type u_2} [AddZeroClass A] {f g : ℕ →+ A} : f = g ↔ f 1 = g 1 - multiplesHom_apply 📋 Mathlib.Algebra.Group.Nat.Hom
{M : Type u_1} [AddMonoid M] (x : M) (n : ℕ) : ((multiplesHom M) x) n = n • x - powersHom.eq_1 📋 Mathlib.Algebra.Group.Nat.Hom
(M : Type u_1) [Monoid M] : powersHom M = Additive.ofMul.trans ((multiplesHom (Additive M)).trans AddMonoidHom.toMultiplicative'') - multiplesHom_symm_apply 📋 Mathlib.Algebra.Group.Nat.Hom
{M : Type u_1} [AddMonoid M] (f : ℕ →+ M) : (multiplesHom M).symm f = f 1 - multiplesHom.eq_1 📋 Mathlib.Algebra.Group.Nat.Hom
(M : Type u_1) [AddMonoid M] : multiplesHom M = { toFun := fun x => { toFun := fun n => n • x, map_zero' := ⋯, map_add' := ⋯ }, invFun := fun f => f 1, left_inv := ⋯, right_inv := ⋯ } - multiplesAddHom_apply 📋 Mathlib.Algebra.Group.Nat.Hom
{M : Type u_1} [AddCommMonoid M] (x : M) (n : ℕ) : ((multiplesAddHom M) x) n = n • x - multiplesAddHom_symm_apply 📋 Mathlib.Algebra.Group.Nat.Hom
{M : Type u_1} [AddCommMonoid M] (f : ℕ →+ M) : (multiplesAddHom M).symm f = f 1 - Nat.castAddMonoidHom 📋 Mathlib.Data.Nat.Cast.Basic
(α : Type u_3) [AddMonoidWithOne α] : ℕ →+ α - Nat.coe_castAddMonoidHom 📋 Mathlib.Data.Nat.Cast.Basic
{α : Type u_1} [AddMonoidWithOne α] : ⇑(Nat.castAddMonoidHom α) = Nat.cast - Multiset.replicateAddMonoidHom 📋 Mathlib.Algebra.Order.Group.Multiset
{α : Type u_1} (a : α) : ℕ →+ Multiset α - Multiset.replicateAddMonoidHom_apply 📋 Mathlib.Algebra.Order.Group.Multiset
{α : Type u_1} (a : α) (n : ℕ) : (Multiset.replicateAddMonoidHom a) n = Multiset.replicate n a - AddSubmonoid.closure_singleton_eq 📋 Mathlib.Algebra.Group.Submonoid.Membership
{A : Type u_2} [AddMonoid A] (x : A) : AddSubmonoid.closure {x} = AddMonoidHom.mrange ((multiplesHom A) x) - AddSubmonoid.multiples.eq_1 📋 Mathlib.Algebra.Group.Submonoid.Membership
{A : Type u_2} [AddMonoid A] (x : A) : AddSubmonoid.multiples x = (AddMonoidHom.mrange ((multiplesHom A) x)).copy (Set.range fun i => i • x) ⋯ - AddSubmonoid.one_eq_mrange 📋 Mathlib.Algebra.Ring.Submonoid.Pointwise
{R : Type u_2} [AddMonoidWithOne R] : 1 = AddMonoidHom.mrange (Nat.castAddMonoidHom R) - AddMonoidHom.ENatMap 📋 Mathlib.Data.ENat.Basic
{N : Type u_2} [AddZeroClass N] (f : ℕ →+ N) : ℕ∞ →+ WithTop N - AddMonoidHom.ENatMap_apply 📋 Mathlib.Data.ENat.Basic
{N : Type u_2} [AddZeroClass N] (f : ℕ →+ N) : ⇑f.ENatMap = ENat.map ⇑f - AddMonoidHom.fromNatEquiv 📋 Mathlib.Algebra.Category.MonCat.ForgetCorepresentable
(α : Type u) [AddMonoid α] : (ℕ →+ α) ≃ α - uliftMultiplesHom.eq_1 📋 Mathlib.Algebra.Category.MonCat.ForgetCorepresentable
(M : Type u) [AddMonoid M] : uliftMultiplesHom M = (multiplesHom M).trans (AddMonoidHom.precompEquiv AddEquiv.ulift M)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65