Loogle!
Result
Found 4546 declarations mentioning List and Nat. Of these, 33 match your pattern(s).
- List.iota 📋 Init.Data.List.Basic
: ℕ → List ℕ - List.iotaTR 📋 Init.Data.List.Basic
(n : ℕ) : List ℕ - List.range 📋 Init.Data.List.Basic
(n : ℕ) : List ℕ - List.iotaTR.go 📋 Init.Data.List.Basic
: ℕ → List ℕ → List ℕ - List.range.loop 📋 Init.Data.List.Basic
: ℕ → List ℕ → List ℕ - List.iota_eq_iotaTR 📋 Init.Data.List.Basic
: List.iota = List.iotaTR - List.range' 📋 Init.Data.List.Basic
(start len : ℕ) (step : ℕ := 1) : List ℕ - List.range'TR 📋 Init.Data.List.Basic
(s n : ℕ) (step : ℕ := 1) : List ℕ - List.range'TR.go 📋 Init.Data.List.Basic
(step : ℕ := 1) : ℕ → ℕ → List ℕ → List ℕ - List.range'_eq_range'TR 📋 Init.Data.List.Basic
: @List.range' = @List.range'TR - Lean.Data.AC.insert 📋 Init.Data.AC
(x : ℕ) : List ℕ → List ℕ - Lean.Data.AC.mergeIdem.loop 📋 Init.Data.AC
: ℕ → List ℕ → List ℕ - Plausible.Nat.shrink 📋 Plausible.Sampleable
(n : ℕ) : List ℕ - Nat.primeFactorsList 📋 Mathlib.Data.Nat.Factors
: ℕ → List ℕ - Nat.digitsAux0 📋 Mathlib.Data.Nat.Digits
: ℕ → List ℕ - Nat.digitsAux1 📋 Mathlib.Data.Nat.Digits
(n : ℕ) : List ℕ - Nat.digits 📋 Mathlib.Data.Nat.Digits
: ℕ → ℕ → List ℕ - Nat.digits.eq_1 📋 Mathlib.Data.Nat.Digits
: Nat.digits 0 = Nat.digitsAux0 - Nat.digits.eq_2 📋 Mathlib.Data.Nat.Digits
: Nat.digits 1 = Nat.digitsAux1 - Nat.digitsAux 📋 Mathlib.Data.Nat.Digits
(b : ℕ) (h : 2 ≤ b) : ℕ → List ℕ - Nat.digits.eq_3 📋 Mathlib.Data.Nat.Digits
(b : ℕ) : b.succ.succ.digits = (b + 2).digitsAux ⋯ - Composition.blocks 📋 Mathlib.Combinatorics.Enumerative.Composition
{n : ℕ} (self : Composition n) : List ℕ - CompositionAsSet.blocks 📋 Mathlib.Combinatorics.Enumerative.Composition
{n : ℕ} (c : CompositionAsSet n) : List ℕ - Denumerable.lower 📋 Mathlib.Logic.Equiv.Multiset
: List ℕ → ℕ → List ℕ - Denumerable.raise 📋 Mathlib.Logic.Equiv.Multiset
: List ℕ → ℕ → List ℕ - Denumerable.lower' 📋 Mathlib.Logic.Equiv.Finset
: List ℕ → ℕ → List ℕ - Denumerable.raise' 📋 Mathlib.Logic.Equiv.Finset
: List ℕ → ℕ → List ℕ - SimplexCategoryGenRel.simplicialInsert 📋 Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.NormalForms
(a : ℕ) : List ℕ → List ℕ - Nat.bitIndices 📋 Mathlib.Data.Nat.BitIndices
(n : ℕ) : List ℕ - PosNum.oneBits 📋 Mathlib.Data.Num.Bitwise
: PosNum → ℕ → List ℕ - List.Ico 📋 Mathlib.Data.List.Intervals
(n m : ℕ) : List ℕ - Nat.zeckendorf 📋 Mathlib.Data.Nat.Fib.Zeckendorf
: ℕ → List ℕ - DihedralGroup.reciprocalFactors 📋 Mathlib.GroupTheory.CommutingProbability
(n : ℕ) : List ℕ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 3008304