Loogle!
Result
Found 1812 declarations mentioning Nat.Prime. Of these, 153 have a name containing "iff".
- Nat.irreducible_iff_nat_prime π Mathlib.Data.Nat.Prime.Defs
(a : β) : Irreducible a β Nat.Prime a - Nat.prime_iff π Mathlib.Data.Nat.Prime.Defs
{p : β} : Nat.Prime p β Prime p - Nat.Prime.coprime_iff_not_dvd π Mathlib.Data.Nat.Prime.Defs
{p n : β} (pp : Nat.Prime p) : p.Coprime n β Β¬p β£ n - Nat.prime_dvd_prime_iff_eq π Mathlib.Data.Nat.Prime.Defs
{p q : β} (pp : Nat.Prime p) (qp : Nat.Prime q) : p β£ q β p = q - Nat.not_prime_iff_minFac_lt π Mathlib.Data.Nat.Prime.Defs
{n : β} (n2 : 2 β€ n) : Β¬Nat.Prime n β n.minFac < n - char_eq_expChar_iff π Mathlib.Algebra.CharP.Defs
(R : Type u_1) [AddMonoidWithOne R] (p q : β) [hp : CharP R p] [hq : ExpChar R q] : p = q β Nat.Prime p - CharP.charP_iff_prime_eq_zero π Mathlib.Algebra.CharP.Basic
{R : Type u_1} [NonAssocSemiring R] [Nontrivial R] {p : β} (hp : Nat.Prime p) : CharP R p β βp = 0 - CharZero.charZero_iff_forall_prime_ne_zero π Mathlib.Algebra.CharP.Basic
(R : Type u_1) [NonAssocRing R] [NoZeroDivisors R] [Nontrivial R] : CharZero R β β (p : β), Nat.Prime p β βp β 0 - Nat.Prime.dvd_iff_not_coprime π Mathlib.Data.Nat.Prime.Basic
{p n : β} (pp : Nat.Prime p) : p β£ n β Β¬p.Coprime n - Nat.Prime.even_iff π Mathlib.Data.Nat.Prime.Basic
{p : β} (hp : Nat.Prime p) : Even p β p = 2 - Nat.eq_one_iff_not_exists_prime_dvd π Mathlib.Data.Nat.Prime.Basic
{n : β} : n = 1 β β (p : β), Nat.Prime p β Β¬p β£ n - Nat.ne_one_iff_exists_prime_dvd π Mathlib.Data.Nat.Prime.Basic
{n : β} : n β 1 β β p, Nat.Prime p β§ p β£ n - Nat.Prime.dvd_iff_eq π Mathlib.Data.Nat.Prime.Basic
{p a : β} (hp : Nat.Prime p) (a1 : a β 1) : a β£ p β p = a - Nat.Prime.not_coprime_iff_dvd π Mathlib.Data.Nat.Prime.Basic
{m n : β} : Β¬m.Coprime n β β p, Nat.Prime p β§ p β£ m β§ p β£ n - Nat.Prime.mod_two_eq_one_iff_ne_two π Mathlib.Data.Nat.Prime.Basic
{p : β} [Fact (Nat.Prime p)] : p % 2 = 1 β p β 2 - Nat.Prime.pow_eq_iff π Mathlib.Data.Nat.Prime.Basic
{p a k : β} (hp : Nat.Prime p) : a ^ k = p β a = p β§ k = 1 - Nat.not_prime_iff_exists_dvd_ne π Mathlib.Data.Nat.Prime.Basic
{n : β} (h : 2 β€ n) : Β¬Nat.Prime n β β m, m β£ n β§ m β 1 β§ m β n - Nat.prime_mul_iff π Mathlib.Data.Nat.Prime.Basic
{a b : β} : Nat.Prime (a * b) β Nat.Prime a β§ b = 1 β¨ Nat.Prime b β§ a = 1 - Nat.not_prime_iff_exists_dvd_lt π Mathlib.Data.Nat.Prime.Basic
{n : β} (h : 2 β€ n) : Β¬Nat.Prime n β β m, m β£ n β§ 2 β€ m β§ m < n - Nat.Prime.mul_eq_prime_sq_iff π Mathlib.Data.Nat.Prime.Basic
{x y p : β} (hp : Nat.Prime p) (hx : x β 1) (hy : y β 1) : x * y = p ^ 2 β x = p β§ y = p - Function.minimalPeriod_eq_prime_iff π Mathlib.Dynamics.PeriodicPts.Lemmas
{Ξ± : Type u_1} {f : Ξ± β Ξ±} {x : Ξ±} {p : β} [hp : Fact (Nat.Prime p)] : Function.minimalPeriod f x = p β Function.IsPeriodicPt f p x β§ Β¬Function.IsFixedPt f x - isPrimePow_nat_iff π Mathlib.Algebra.IsPrimePow
(n : β) : IsPrimePow n β β p k, Nat.Prime p β§ 0 < k β§ p ^ k = n - isPrimePow_nat_iff_bounded π Mathlib.Algebra.IsPrimePow
(n : β) : IsPrimePow n β β p β€ n, β k β€ n, Nat.Prime p β§ 0 < k β§ p ^ k = n - Nat.mem_primeFactorsList_iff_dvd π Mathlib.Data.Nat.Factors
{n p : β} (hn : n β 0) (hp : Nat.Prime p) : p β n.primeFactorsList β p β£ n - Nat.replicate_subperm_primeFactorsList_iff π Mathlib.Data.Nat.Factors
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : (List.replicate n a).Subperm b.primeFactorsList β a ^ n β£ b - Nat.sum_properDivisors_eq_one_iff_prime π Mathlib.NumberTheory.Divisors
{n : β} : β x β n.properDivisors, x = 1 β Nat.Prime n - Nat.properDivisors_eq_singleton_one_iff_prime π Mathlib.NumberTheory.Divisors
{n : β} : n.properDivisors = {1} β Nat.Prime n - addOrderOf_eq_prime_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [AddMonoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : addOrderOf x = p β p β’ x = 0 β§ x β 0 - orderOf_eq_prime_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [Monoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : orderOf x = p β x ^ p = 1 β§ x β 1 - exists_addOrderOf_eq_prime_pow_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [AddMonoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : (β k, addOrderOf x = p ^ k) β β m, p ^ m β’ x = 0 - exists_orderOf_eq_prime_pow_iff π Mathlib.GroupTheory.OrderOfElement
{G : Type u_1} [Monoid G] {x : G} {p : β} [hp : Fact (Nat.Prime p)] : (β k, orderOf x = p ^ k) β β m, x ^ p ^ m = 1 - ZMod.isUnit_prime_iff_not_dvd π Mathlib.Data.ZMod.Basic
{n p : β} (hp : Nat.Prime p) : IsUnit βp β Β¬p β£ n - Nat.Prime.dvd_choose_pow_iff π Mathlib.Data.Nat.Multiplicity
{p n k : β} (hp : Nat.Prime p) : p β£ (p ^ n).choose k β k β 0 β§ k β p ^ n - Nat.Prime.pow_dvd_factorial_iff π Mathlib.Data.Nat.Multiplicity
{p n r b : β} (hp : Nat.Prime p) (hbn : Nat.log p n < b) : p ^ r β£ n.factorial β r β€ β i β Finset.Ico 1 b, n / p ^ i - Equiv.Perm.pow_prime_eq_one_iff π Mathlib.GroupTheory.Perm.Cycle.Type
{Ξ± : Type u_1} [Fintype Ξ±] [DecidableEq Ξ±] {Ο : Equiv.Perm Ξ±} {p : β} [hp : Fact (Nat.Prime p)] : Ο ^ p = 1 β β c β Ο.cycleType, c = p - le_padicValNat_iff_replicate_subperm_primeFactorsList π Mathlib.NumberTheory.Padics.PadicVal.Defs
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : n β€ padicValNat a b β (List.replicate n a).Subperm b.primeFactorsList - le_emultiplicity_iff_replicate_subperm_primeFactorsList π Mathlib.NumberTheory.Padics.PadicVal.Defs
{a b n : β} (ha : Nat.Prime a) (hb : b β 0) : βn β€ emultiplicity a b β (List.replicate n a).Subperm b.primeFactorsList - Nat.factorization_eq_zero_iff π Mathlib.Data.Nat.Factorization.Defs
(n p : β) : n.factorization p = 0 β Β¬Nat.Prime p β¨ Β¬p β£ n β¨ n = 0 - Nat.eq_iff_prime_padicValNat_eq π Mathlib.Data.Nat.Factorization.Basic
(a b : β) (ha : a β 0) (hb : b β 0) : a = b β β (p : β), Nat.Prime p β padicValNat p a = padicValNat p b - Nat.dvd_iff_prime_pow_dvd_dvd π Mathlib.Data.Nat.Factorization.Basic
(n d : β) : d β£ n β β (p k : β), Nat.Prime p β p ^ k β£ d β p ^ k β£ n - Nat.Prime.dvd_iff_one_le_factorization π Mathlib.Data.Nat.Factorization.Basic
{p n : β} (pp : Nat.Prime p) (hn : n β 0) : p β£ n β 1 β€ n.factorization p - Nat.Prime.pow_dvd_iff_le_factorization π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β k β€ n.factorization p - Nat.factorization_eq_zero_iff_remainder π Mathlib.Data.Nat.Factorization.Basic
{p r : β} (i : β) (pp : Nat.Prime p) (hr0 : r β 0) : Β¬p β£ r β (p * i + r).factorization p = 0 - Nat.factorization_prime_le_iff_dvd π Mathlib.Data.Nat.Factorization.Basic
{d n : β} (hd : d β 0) (hn : n β 0) : (β (p : β), Nat.Prime p β d.factorization p β€ n.factorization p) β d β£ n - Nat.eq_factorization_iff π Mathlib.Data.Nat.Factorization.Basic
{n : β} {f : β ββ β} (hn : n β 0) (hf : β p β f.support, Nat.Prime p) : f = n.factorization β (f.prod fun x1 x2 => x1 ^ x2) = n - Nat.Prime.pow_dvd_iff_dvd_ordProj π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β p ^ k β£ p ^ n.factorization p - Nat.Prime.pow_dvd_iff_dvd_ord_proj π Mathlib.Data.Nat.Factorization.Basic
{p k n : β} (pp : Nat.Prime p) (hn : n β 0) : p ^ k β£ n β p ^ k β£ p ^ n.factorization p - Nat.totient_eq_iff_prime π Mathlib.Data.Nat.Totient
{p : β} (hp : 0 < p) : p.totient = p - 1 β Nat.Prime p - Nat.prime_iff_card_units π Mathlib.Data.Nat.Totient
(p : β) [Fintype (ZMod p)Λ£] : Nat.Prime p β Fintype.card (ZMod p)Λ£ = p - 1 - AddMonoid.exponent_eq_prime_iff π Mathlib.GroupTheory.Exponent
{G : Type u_1} [AddMonoid G] [Nontrivial G] {p : β} (hp : Nat.Prime p) : AddMonoid.exponent G = p β β (g : G), g β 0 β addOrderOf g = p - Monoid.exponent_eq_prime_iff π Mathlib.GroupTheory.Exponent
{G : Type u_1} [Monoid G] [Nontrivial G] {p : β} (hp : Nat.Prime p) : Monoid.exponent G = p β β (g : G), g β 1 β orderOf g = p - AddCommGroup.is_simple_iff_isAddCyclic_and_prime_card π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Finite Ξ±] [AddCommGroup Ξ±] : IsSimpleAddGroup Ξ± β IsAddCyclic Ξ± β§ Nat.Prime (Nat.card Ξ±) - CommGroup.is_simple_iff_isCyclic_and_prime_card π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Finite Ξ±] [CommGroup Ξ±] : IsSimpleGroup Ξ± β IsCyclic Ξ± β§ Nat.Prime (Nat.card Ξ±) - not_isAddCyclic_iff_exponent_eq_prime π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [AddGroup Ξ±] {p : β} (hp : Nat.Prime p) (hΞ± : Nat.card Ξ± = p ^ 2) : Β¬IsAddCyclic Ξ± β AddMonoid.exponent Ξ± = p - not_isCyclic_iff_exponent_eq_prime π Mathlib.GroupTheory.SpecificGroups.Cyclic
{Ξ± : Type u_1} [Group Ξ±] {p : β} (hp : Nat.Prime p) (hΞ± : Nat.card Ξ± = p ^ 2) : Β¬IsCyclic Ξ± β Monoid.exponent Ξ± = p - IsPGroup.iff_card π Mathlib.GroupTheory.PGroup
{p : β} {G : Type u_1} [Group G] [Fact (Nat.Prime p)] [Finite G] : IsPGroup p G β β n, Nat.card G = p ^ n - IsPGroup.iff_orderOf π Mathlib.GroupTheory.PGroup
{p : β} {G : Type u_1} [Group G] [hp : Fact (Nat.Prime p)] : IsPGroup p G β β (g : G), β k, orderOf g = p ^ k - IsPGroup.nontrivial_iff_card π Mathlib.GroupTheory.PGroup
{p : β} {G : Type u_1} [Group G] (hG : IsPGroup p G) [hp : Fact (Nat.Prime p)] [Finite G] : Nontrivial G β β n > 0, Nat.card G = p ^ n - prime_dvd_char_iff_dvd_card π Mathlib.Algebra.CharP.CharAndCard
{R : Type u_1} [CommRing R] [Fintype R] (p : β) [Fact (Nat.Prime p)] : p β£ ringChar R β p β£ Fintype.card R - isUnit_iff_not_dvd_char π Mathlib.Algebra.CharP.CharAndCard
(R : Type u_1) [CommRing R] (p : β) [Fact (Nat.Prime p)] [Finite R] : IsUnit βp β Β¬p β£ ringChar R - isUnit_iff_not_dvd_char_of_ringChar_ne_zero π Mathlib.Algebra.CharP.CharAndCard
(R : Type u_1) [CommRing R] (p : β) [Fact (Nat.Prime p)] (hR : ringChar R β 0) : IsUnit βp β Β¬p β£ ringChar R - CharP.isUnit_natCast_iff π Mathlib.Algebra.CharP.Invertible
{R : Type u_1} [Ring R] {p : β} [CharP R p] {n : β} (hp : Nat.Prime p) : IsUnit βn β Β¬p β£ n - CharP.isUnit_intCast_iff π Mathlib.Algebra.CharP.Invertible
{R : Type u_1} [Ring R] {p : β} [CharP R p] {z : β€} (hp : Nat.Prime p) : IsUnit βz β Β¬βp β£ z - CharP.isUnit_ofNat_iff π Mathlib.Algebra.CharP.Invertible
{R : Type u_1} [Ring R] {p : β} [CharP R p] {n : β} [n.AtLeastTwo] (hp : Nat.Prime p) : IsUnit (OfNat.ofNat n) β Β¬p β£ OfNat.ofNat n - X_pow_sub_C_irreducible_iff_of_prime π Mathlib.FieldTheory.KummerPolynomial
{K : Type u} [Field K] {p : β} (hp : Nat.Prime p) {a : K} : Irreducible (Polynomial.X ^ p - Polynomial.C a) β β (b : K), b ^ p β a - isPrimePow_iff_unique_prime_dvd π Mathlib.Data.Nat.Factorization.PrimePow
{n : β} : IsPrimePow n β β! p, Nat.Prime p β§ p β£ n - exists_ordCompl_eq_one_iff_isPrimePow π Mathlib.Data.Nat.Factorization.PrimePow
{n : β} (hn : n β 1) : IsPrimePow n β β p, Nat.Prime p β§ n / p ^ n.factorization p = 1 - exists_ord_compl_eq_one_iff_isPrimePow π Mathlib.Data.Nat.Factorization.PrimePow
{n : β} (hn : n β 1) : IsPrimePow n β β p, Nat.Prime p β§ n / p ^ n.factorization p = 1 - Nat.squarefree_and_prime_pow_iff_prime π Mathlib.Data.Nat.Squarefree
{n : β} : Squarefree n β§ IsPrimePow n β Nat.Prime n - Nat.squarefree_iff_prime_squarefree π Mathlib.Data.Nat.Squarefree
{n : β} : Squarefree n β β (x : β), Nat.Prime x β Β¬x * x β£ n - Nat.Squarefree.ext_iff π Mathlib.Data.Nat.Squarefree
{n m : β} (hn : Squarefree n) (hm : Squarefree m) : n = m β β (p : β), Nat.Prime p β (p β£ n β p β£ m) - ArithmeticFunction.cardFactors_eq_one_iff_prime π Mathlib.NumberTheory.ArithmeticFunction
{n : β} : ArithmeticFunction.cardFactors n = 1 β Nat.Prime n - ArithmeticFunction.IsMultiplicative.eq_iff_eq_on_prime_powers π Mathlib.NumberTheory.ArithmeticFunction
{R : Type u_1} [CommMonoidWithZero R] (f : ArithmeticFunction R) (hf : f.IsMultiplicative) (g : ArithmeticFunction R) (hg : g.IsMultiplicative) : f = g β β (p i : β), Nat.Prime p β f (p ^ i) = g (p ^ i) - Nat.prime_iff_prime_int π Mathlib.Data.Nat.Prime.Int
{p : β} : Nat.Prime p β Prime βp - Int.prime_ofNat_iff π Mathlib.Data.Nat.Prime.Int
{n : β} : Prime (OfNat.ofNat n) β Nat.Prime (OfNat.ofNat n) - Int.prime_iff_natAbs_prime π Mathlib.RingTheory.Int.Basic
{k : β€} : Prime k β Nat.Prime k.natAbs - mem_bot_iff_intCast π Mathlib.FieldTheory.Finite.Basic
(p : β) [Fact (Nat.Prime p)] (K : Type u_4) [DivisionRing K] [CharP K p] {x : K} : x β β₯ β β n, βn = x - Subfield.mem_bot_iff_pow_eq_self π Mathlib.FieldTheory.Finite.Basic
(F : Type u_3) [Field F] (p : β) [Fact (Nat.Prime p)] [CharP F p] {x : F} : x β β₯ β x ^ p = x - padicValRat.finite_int_prime_iff π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p : β} [hp : Fact (Nat.Prime p)] {a : β€} : FiniteMultiplicity (βp) a β a β 0 - dvd_iff_padicValNat_ne_zero π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p n : β} [Fact (Nat.Prime p)] (hn0 : n β 0) : p β£ n β padicValNat p n β 0 - padicValNat_dvd_iff_le π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p : β} [hp : Fact (Nat.Prime p)] {a n : β} (ha : a β 0) : p ^ n β£ a β n β€ padicValNat p a - padicValNat_dvd_iff π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p : β} (n : β) [hp : Fact (Nat.Prime p)] (a : β) : p ^ n β£ a β a = 0 β¨ n β€ padicValNat p a - padicValInt_dvd_iff π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p : β} [hp : Fact (Nat.Prime p)] (n : β) (a : β€) : βp ^ n β£ a β a = 0 β¨ n β€ padicValInt p a - nat_log_eq_padicValNat_iff π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p n : β} [hp : Fact (Nat.Prime p)] (hn : 0 < n) : Nat.log p n = padicValNat p n β n < p ^ (padicValNat p n + 1) - padicValRat.padicValRat_le_padicValRat_iff π Mathlib.NumberTheory.Padics.PadicVal.Basic
{p : β} [hp : Fact (Nat.Prime p)] {nβ nβ dβ dβ : β€} (hnβ : nβ β 0) (hnβ : nβ β 0) (hdβ : dβ β 0) (hdβ : dβ β 0) : padicValRat p (Rat.divInt nβ dβ) β€ padicValRat p (Rat.divInt nβ dβ) β β (n : β), βp ^ n β£ nβ * dβ β βp ^ n β£ nβ * dβ - Polynomial.isRoot_cyclotomic_prime_pow_mul_iff_of_charP π Mathlib.RingTheory.Polynomial.Cyclotomic.Expand
{m k p : β} {R : Type u_1} [CommRing R] [IsDomain R] [hp : Fact (Nat.Prime p)] [hchar : CharP R p] {ΞΌ : R} [NeZero βm] : (Polynomial.cyclotomic (p ^ k * m) R).IsRoot ΞΌ β IsPrimitiveRoot ΞΌ m - IsUnit.natCast_factorial_iff_of_charP π Mathlib.Data.Nat.Factorial.NatCast
{A : Type u_1} [Ring A] (p : β) [Fact (Nat.Prime p)] [CharP A p] {n : β} : IsUnit βn.factorial β n < p - ZMod.eq_zero_iff_gcd_ne_one π Mathlib.Data.ZMod.Coprime
{a : β€} {p : β} [pp : Fact (Nat.Prime p)] : βa = 0 β a.gcd βp β 1 - FirstOrder.Field.ACF_zero_realize_iff_infinite_ACF_prime_realize π Mathlib.ModelTheory.Algebra.Field.IsAlgClosed
{Ο : FirstOrder.Language.ring.Sentence} : FirstOrder.Language.Theory.ACF 0 β¨α΅ Ο β {p | FirstOrder.Language.Theory.ACF βp β¨α΅ Ο}.Infinite - FirstOrder.Field.ACF_zero_realize_iff_finite_ACF_prime_not_realize π Mathlib.ModelTheory.Algebra.Field.IsAlgClosed
{Ο : FirstOrder.Language.ring.Sentence} : FirstOrder.Language.Theory.ACF 0 β¨α΅ Ο β {p | FirstOrder.Language.Theory.ACF βp β¨α΅ Ο}αΆ.Finite - Cardinal.nat_is_prime_iff π Mathlib.SetTheory.Cardinal.Divisibility
{n : β} : Prime βn β Nat.Prime n - Cardinal.is_prime_iff π Mathlib.SetTheory.Cardinal.Divisibility
{a : Cardinal.{u_1}} : Prime a β Cardinal.aleph0 β€ a β¨ β p, a = βp β§ Nat.Prime p - PerfectClosure.r_iff π Mathlib.FieldTheory.PerfectClosure
(K : Type u) [CommRing K] (p : β) [Fact (Nat.Prime p)] [CharP K p] (aβ aβΒΉ : β Γ K) : PerfectClosure.R K p aβ aβΒΉ β β n x, aβ = (n, x) β§ aβΒΉ = (n + 1, (frobenius K p) x) - PerfectClosure.natCast_eq_iff π Mathlib.FieldTheory.PerfectClosure
(K : Type u) [CommRing K] (p : β) [Fact (Nat.Prime p)] [CharP K p] (x y : β) : βx = βy β βx = βy - PerfectClosure.mk_eq_iff π Mathlib.FieldTheory.PerfectClosure
(K : Type u) [CommRing K] (p : β) [Fact (Nat.Prime p)] [CharP K p] (x y : β Γ K) : PerfectClosure.mk K p x = PerfectClosure.mk K p y β β z, (β(frobenius K p))^[y.1 + z] x.2 = (β(frobenius K p))^[x.1 + z] y.2 - PerfectClosure.eq_iff π Mathlib.FieldTheory.PerfectClosure
(K : Type u) [CommRing K] [IsReduced K] (p : β) [Fact (Nat.Prime p)] [CharP K p] (x y : β Γ K) : PerfectClosure.mk K p x = PerfectClosure.mk K p y β (β(frobenius K p))^[y.1] x.2 = (β(frobenius K p))^[x.1] y.2 - X_pow_sub_C_irreducible_iff_forall_prime_of_odd π Mathlib.FieldTheory.KummerExtension
{K : Type u} [Field K] {n : β} (hn : Odd n) {a : K} : Irreducible (Polynomial.X ^ n - Polynomial.C a) β β (p : β), Nat.Prime p β p β£ n β β (b : K), b ^ p β a - X_pow_sub_C_irreducible_iff_of_prime_pow π Mathlib.FieldTheory.KummerExtension
{K : Type u} [Field K] {p : β} (hp : Nat.Prime p) (hp' : p β 2) {n : β} (hn : n β 0) {a : K} : Irreducible (Polynomial.X ^ p ^ n - Polynomial.C a) β β (b : K), b ^ p β a - isZGroup_iff π Mathlib.GroupTheory.SpecificGroups.ZGroup
(G : Type u_1) [Group G] : IsZGroup G β β (p : β), Nat.Prime p β β (P : Sylow p G), IsCyclic β₯βP - padicNorm.nat_eq_one_iff π Mathlib.NumberTheory.Padics.PadicNorm
{p : β} [hp : Fact (Nat.Prime p)] (m : β) : padicNorm p βm = 1 β Β¬p β£ m - padicNorm.nat_lt_one_iff π Mathlib.NumberTheory.Padics.PadicNorm
{p : β} [hp : Fact (Nat.Prime p)] (m : β) : padicNorm p βm < 1 β p β£ m - padicNorm.int_eq_one_iff π Mathlib.NumberTheory.Padics.PadicNorm
{p : β} [hp : Fact (Nat.Prime p)] (m : β€) : padicNorm p βm = 1 β Β¬βp β£ m - padicNorm.int_lt_one_iff π Mathlib.NumberTheory.Padics.PadicNorm
{p : β} [hp : Fact (Nat.Prime p)] (m : β€) : padicNorm p βm < 1 β βp β£ m - padicNorm.dvd_iff_norm_le π Mathlib.NumberTheory.Padics.PadicNorm
{p : β} [hp : Fact (Nat.Prime p)] {n : β} {z : β€} : β(p ^ n) β£ z β padicNorm p βz β€ βp ^ (-βn) - Padic.norm_le_one_iff_val_nonneg π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (x : β_[p]) : βxβ β€ 1 β 0 β€ x.valuation - padicNormE.norm_int_lt_one_iff_dvd π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (k : β€) : ββkβ < 1 β βp β£ k - PadicSeq.norm_zero_iff π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [Fact (Nat.Prime p)] (f : PadicSeq p) : f.norm = 0 β f β 0 - Padic.norm_le_pow_iff_norm_lt_pow_add_one π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (x : β_[p]) (n : β€) : βxβ β€ βp ^ n β βxβ < βp ^ (n + 1) - Padic.norm_lt_pow_iff_norm_le_pow_sub_one π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (x : β_[p]) (n : β€) : βxβ < βp ^ n β βxβ β€ βp ^ (n - 1) - padicNormE.norm_int_le_pow_iff_dvd π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (k : β€) (n : β) : ββkβ β€ βp ^ (-βn) β βp ^ n β£ k - PadicSeq.val_eq_iff_norm_eq π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [Fact (Nat.Prime p)] {f g : PadicSeq p} (hf : Β¬f β 0) (hg : Β¬g β 0) : f.valuation = g.valuation β f.norm = g.norm - PadicSeq.eq_zero_iff_equiv_zero π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (f : PadicSeq p) : CauSeq.Completion.mk f = 0 β f β 0 - PadicSeq.ne_zero_iff_nequiv_zero π Mathlib.NumberTheory.Padics.PadicNumbers
{p : β} [hp : Fact (Nat.Prime p)] (f : PadicSeq p) : CauSeq.Completion.mk f β 0 β Β¬f β 0 - PadicInt.isUnit_iff π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] {z : β€_[p]} : IsUnit z β βzβ = 1 - PadicInt.not_isUnit_iff π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] {z : β€_[p]} : Β¬IsUnit z β βzβ < 1 - PadicInt.norm_int_lt_one_iff_dvd π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (k : β€) : ββkβ < 1 β βp β£ k - PadicInt.mem_subring_iff π Mathlib.NumberTheory.Padics.PadicIntegers
(p : β) [hp : Fact (Nat.Prime p)] {x : β_[p]} : x β PadicInt.subring p β βxβ β€ 1 - PadicInt.norm_le_pow_iff_norm_lt_pow_add_one π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) (n : β€) : βxβ β€ βp ^ n β βxβ < βp ^ (n + 1) - PadicInt.norm_lt_pow_iff_norm_le_pow_sub_one π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) (n : β€) : βxβ < βp ^ n β βxβ β€ βp ^ (n - 1) - PadicInt.norm_int_le_pow_iff_dvd π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] {k : β€} {n : β} : ββkβ β€ βp ^ (-βn) β βp ^ n β£ k - PadicInt.norm_lt_one_iff_dvd π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) : βxβ < 1 β βp β£ x - PadicInt.norm_le_pow_iff_le_valuation π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) (hx : x β 0) (n : β) : βxβ β€ βp ^ (-βn) β n β€ x.valuation - PadicInt.pow_p_dvd_int_iff π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (n : β) (a : β€) : βp ^ n β£ βa β βp ^ n β£ a - PadicInt.norm_le_pow_iff_mem_span_pow π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) (n : β) : βxβ β€ βp ^ (-βn) β x β Ideal.span {βp ^ n} - PadicInt.mem_span_pow_iff_le_valuation π Mathlib.NumberTheory.Padics.PadicIntegers
{p : β} [hp : Fact (Nat.Prime p)] (x : β€_[p]) (hx : x β 0) (n : β) : x β Ideal.span {βp ^ n} β n β€ x.valuation - PadicInt.toZModPow_eq_iff_ext π Mathlib.NumberTheory.Padics.RingHoms
{p : β} [hp_prime : Fact (Nat.Prime p)] {R : Type u_1} [NonAssocSemiring R] {g g' : R β+* β€_[p]} : (β (n : β), (PadicInt.toZModPow n).comp g = (PadicInt.toZModPow n).comp g') β g = g' - Nat.mem_smoothNumbers_iff_forall_le π Mathlib.NumberTheory.SmoothNumbers
{n m : β} : m β n.smoothNumbers β m β 0 β§ β p β€ m, Nat.Prime p β p β£ m β p < n - Nat.mem_factoredNumbers_iff_forall_le π Mathlib.NumberTheory.SmoothNumbers
{s : Finset β} {m : β} : m β Nat.factoredNumbers s β m β 0 β§ β p β€ m, Nat.Prime p β p β£ m β p β s - legendreSym.eq_neg_one_iff π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] {a : β€} : legendreSym p a = -1 β Β¬IsSquare βa - legendreSym.eq_zero_iff π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] (a : β€) : legendreSym p a = 0 β βa = 0 - legendreSym.eq_neg_one_iff' π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] {a : β} : legendreSym p βa = -1 β Β¬IsSquare βa - legendreSym.eq_neg_one_iff_not_one π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] {a : β€} (ha : βa β 0) : legendreSym p a = -1 β Β¬legendreSym p a = 1 - ZMod.exists_sq_eq_neg_one_iff π Mathlib.NumberTheory.LegendreSymbol.Basic
{p : β} [Fact (Nat.Prime p)] : IsSquare (-1) β p % 4 β 3 - legendreSym.eq_one_iff π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] {a : β€} (ha0 : βa β 0) : legendreSym p a = 1 β IsSquare βa - legendreSym.eq_one_iff' π Mathlib.NumberTheory.LegendreSymbol.Basic
(p : β) [Fact (Nat.Prime p)] {a : β} (ha0 : βa β 0) : legendreSym p βa = 1 β IsSquare βa - FiniteField.isSquare_odd_prime_iff π Mathlib.NumberTheory.LegendreSymbol.QuadraticChar.GaussSum
{F : Type u_1} [Field F] [Fintype F] (hF : ringChar F β 2) {p : β} [Fact (Nat.Prime p)] (hp : p β 2) : IsSquare βp β (quadraticChar (ZMod p)) (β(ZMod.Οβ β(Fintype.card F)) * β(Fintype.card F)) β -1 - ZMod.exists_sq_eq_two_iff π Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity
{p : β} [Fact (Nat.Prime p)] (hp : p β 2) : IsSquare 2 β p % 8 = 1 β¨ p % 8 = 7 - ZMod.exists_sq_eq_prime_iff_of_mod_four_eq_one π Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity
{p q : β} [Fact (Nat.Prime p)] [Fact (Nat.Prime q)] (hp1 : p % 4 = 1) (hq1 : q β 2) : IsSquare βq β IsSquare βp - ZMod.exists_sq_eq_neg_two_iff π Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity
{p : β} [Fact (Nat.Prime p)] (hp : p β 2) : IsSquare (-2) β p % 8 = 1 β¨ p % 8 = 3 - ZMod.exists_sq_eq_prime_iff_of_mod_four_eq_three π Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity
{p q : β} [Fact (Nat.Prime p)] [Fact (Nat.Prime q)] (hp3 : p % 4 = 3) (hq3 : q % 4 = 3) (hpq : p β q) : IsSquare βq β Β¬IsSquare βp - lucas_primality_iff π Mathlib.NumberTheory.LucasPrimality
(p : β) : Nat.Prime p β β a, a ^ (p - 1) = 1 β§ β (q : β), Nat.Prime q β q β£ p - 1 β a ^ ((p - 1) / q) β 1 - ZMod.nonsquare_iff_jacobiSym_eq_neg_one π Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol
{a : β€} {p : β} [Fact (Nat.Prime p)] : jacobiSym a p = -1 β Β¬IsSquare βa - PadicInt.fwdDiff_mahlerSeries π Mathlib.NumberTheory.Padics.MahlerBasis
{p : β} [hp : Fact (Nat.Prime p)] {E : Type u_1} [NormedAddCommGroup E] [Module β€_[p] E] [IsBoundedSMul β€_[p] E] [IsUltrametricDist E] [CompleteSpace E] {a : β β E} (ha : Filter.Tendsto a Filter.atTop (nhds 0)) (n : β) : (fwdDiff 1)^[n] (β(PadicInt.mahlerSeries a)) 0 = a n - PadicInt.fwdDiff_tendsto_zero π Mathlib.NumberTheory.Padics.MahlerBasis
{p : β} [hp : Fact (Nat.Prime p)] {E : Type u_1} [NormedAddCommGroup E] [Module β€_[p] E] [IsBoundedSMul β€_[p] E] [IsUltrametricDist E] (f : C(β€_[p], E)) : Filter.Tendsto (fun x => (fwdDiff 1)^[x] (βf) 0) Filter.atTop (nhds 0) - PadicInt.fwdDiff_iter_le_of_forall_le π Mathlib.NumberTheory.Padics.MahlerBasis
{p : β} [hp : Fact (Nat.Prime p)] {E : Type u_1} [NormedAddCommGroup E] [Module β€_[p] E] [IsBoundedSMul β€_[p] E] [IsUltrametricDist E] {f : C(β€_[p], E)} {s t : β} (hst : β (x y : β€_[p]), βx - yβ β€ βp ^ (-βt) β βf x - f yβ β€ βfβ / βp ^ s) (n : β) : β(fwdDiff 1)^[n + s * p ^ t] (βf) 0β β€ βfβ / βp ^ s - GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime π Mathlib.NumberTheory.Zsqrtd.QuadraticReciprocity
(p : β) [Fact (Nat.Prime p)] : Prime βp β p % 4 = 3 - Nat.eq_sq_add_sq_iff π Mathlib.NumberTheory.SumTwoSquares
{n : β} : (β x y, n = x ^ 2 + y ^ 2) β β {q : β}, Nat.Prime q β q % 4 = 3 β Even (padicValNat q n) - ZMod.isSquare_neg_one_iff π Mathlib.NumberTheory.SumTwoSquares
{n : β} (hn : Squarefree n) : IsSquare (-1) β β {q : β}, Nat.Prime q β q β£ n β q % 4 β 3 - Nat.prime_iff_fac_equiv_neg_one π Mathlib.NumberTheory.Wilson
{n : β} (h : n β 1) : Nat.Prime n β β(n - 1).factorial = -1 - Perfection.ext_iff π Mathlib.RingTheory.Perfection
{R : Type uβ} [CommSemiring R] {p : β} [hp : Fact (Nat.Prime p)] [CharP R p] {f g : Ring.Perfection R p} : f = g β β (n : β), (Perfection.coeff R p n) f = (Perfection.coeff R p n) g - WittVector.le_coeff_eq_iff_le_sub_coeff_eq_zero π Mathlib.RingTheory.WittVector.Complete
{p : β} [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] {x y : WittVector p k} {n : β} : (β i < n, x.coeff i = y.coeff i) β β i < n, (x - y).coeff i = 0 - WittVector.mem_span_p_iff_coeff_zero_eq_zero π Mathlib.RingTheory.WittVector.Complete
{p : β} [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] [PerfectRing k p] (x : WittVector p k) : x β Ideal.span {βp} β x.coeff 0 = 0 - WittVector.mem_span_p_pow_iff_le_coeff_eq_zero π Mathlib.RingTheory.WittVector.Complete
{p : β} [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] [PerfectRing k p] (x : WittVector p k) (n : β) : x β Ideal.span {βp ^ n} β β m < n, x.coeff m = 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65