Loogle!
Result
Found 18 declarations mentioning NonUnitalStarSubalgebra.map.
- NonUnitalStarSubalgebra.map š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R A) : NonUnitalStarSubalgebra R B - NonUnitalStarSubalgebra.map_injective š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {f : F} (hf : Function.Injective āf) : Function.Injective (NonUnitalStarSubalgebra.map f) - NonUnitalStarSubalgebra.map_toNonUnitalSubalgebra š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} : (NonUnitalStarSubalgebra.map f S).toNonUnitalSubalgebra = NonUnitalSubalgebra.map f S.toNonUnitalSubalgebra - NonUnitalStarSubalgebra.coe_map š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (S : NonUnitalStarSubalgebra R A) (f : F) : ā(NonUnitalStarSubalgebra.map f S) = āf '' āS - NonUnitalStarSubalgebra.mem_map š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} {y : B} : y ā NonUnitalStarSubalgebra.map f S ā ā x ā S, f x = y - NonUnitalStarSubalgebra.gc_map_comap š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) : GaloisConnection (NonUnitalStarSubalgebra.map f) (NonUnitalStarSubalgebra.comap f) - NonUnitalStarSubalgebra.map_id š Mathlib.Algebra.Star.NonUnitalSubalgebra
{R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) : NonUnitalStarSubalgebra.map (NonUnitalStarAlgHom.id R A) S = S - NonUnitalStarSubalgebra.map_mono š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {Sā Sā : NonUnitalStarSubalgebra R A} {f : F} : Sā ⤠Sā ā NonUnitalStarSubalgebra.map f Sā ⤠NonUnitalStarSubalgebra.map f Sā - NonUnitalStarSubalgebra.map_le š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} {U : NonUnitalStarSubalgebra R B} : NonUnitalStarSubalgebra.map f S ⤠U ā S ⤠NonUnitalStarSubalgebra.comap f U - NonUnitalStarAlgHom.range_comp š Mathlib.Algebra.Star.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [NonUnitalNonAssocSemiring C] [Module R C] [Star C] (f : A āāāā[R] B) (g : B āāāā[R] C) : NonUnitalStarAlgHom.range (g.comp f) = NonUnitalStarSubalgebra.map g (NonUnitalStarAlgHom.range f) - NonUnitalStarSubalgebra.map_map š Mathlib.Algebra.Star.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [NonUnitalNonAssocSemiring C] [Module R C] [Star C] (S : NonUnitalStarSubalgebra R A) (g : B āāāā[R] C) (f : A āāāā[R] B) : NonUnitalStarSubalgebra.map g (NonUnitalStarSubalgebra.map f S) = NonUnitalStarSubalgebra.map (g.comp f) S - NonUnitalStarAlgebra.map_top š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (f : F) : NonUnitalStarSubalgebra.map f ⤠= NonUnitalStarAlgHom.range f - NonUnitalStarAlgHom.map_adjoin š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (s : Set A) : NonUnitalStarSubalgebra.map f (NonUnitalStarAlgebra.adjoin R s) = NonUnitalStarAlgebra.adjoin R (āf '' s) - NonUnitalStarAlgHom.map_adjoin_singleton š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (x : A) : NonUnitalStarSubalgebra.map f (NonUnitalStarAlgebra.adjoin R {x}) = NonUnitalStarAlgebra.adjoin R {f x} - NonUnitalStarAlgebra.map_bot š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) : NonUnitalStarSubalgebra.map f ā„ = ā„ - NonUnitalStarAlgebra.map_iInf š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {ι : Sort u_1} [Nonempty ι] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (hf : Function.Injective āf) (S : ι ā NonUnitalStarSubalgebra R A) : NonUnitalStarSubalgebra.map f (⨠i, S i) = ⨠i, NonUnitalStarSubalgebra.map f (S i) - NonUnitalStarAlgebra.map_sup š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (S T : NonUnitalStarSubalgebra R A) : NonUnitalStarSubalgebra.map f (S ā T) = NonUnitalStarSubalgebra.map f S ā NonUnitalStarSubalgebra.map f T - NonUnitalStarAlgebra.map_inf š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (hf : Function.Injective āf) (S T : NonUnitalStarSubalgebra R A) : NonUnitalStarSubalgebra.map f (S ā T) = NonUnitalStarSubalgebra.map f S ā NonUnitalStarSubalgebra.map f T
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08