Loogle!
Result
Found 20 declarations mentioning NonUnitalSubalgebra.map.
- NonUnitalSubalgebra.map š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra R B - NonUnitalSubalgebra.map_injective š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {f : F} (hf : Function.Injective āf) : Function.Injective (NonUnitalSubalgebra.map f) - NonUnitalSubalgebra.coe_map š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R A) (f : F) : ā(NonUnitalSubalgebra.map f S) = āf '' āS - NonUnitalSubalgebra.gc_map_comap š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) : GaloisConnection (NonUnitalSubalgebra.map f) (NonUnitalSubalgebra.comap f) - NonUnitalSubalgebra.mem_map š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {y : B} : y ā NonUnitalSubalgebra.map f S ā ā x ā S, f x = y - NonUnitalSubalgebra.map_mono š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {Sā Sā : NonUnitalSubalgebra R A} {f : F} : Sā ⤠Sā ā NonUnitalSubalgebra.map f Sā ⤠NonUnitalSubalgebra.map f Sā - NonUnitalSubalgebra.map_le š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} : NonUnitalSubalgebra.map f S ⤠U ā S ⤠NonUnitalSubalgebra.comap f U - NonUnitalSubalgebra.map_toNonUnitalSubsemiring š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} : (NonUnitalSubalgebra.map f S).toNonUnitalSubsemiring = NonUnitalSubsemiring.map (āf) S.toNonUnitalSubsemiring - NonUnitalSubalgebra.map_id š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) : NonUnitalSubalgebra.map (NonUnitalAlgHom.id R A) S = S - NonUnitalSubalgebra.map_toSubmodule š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} : (NonUnitalSubalgebra.map f S).toSubmodule = Submodule.map (LinearMapClass.linearMap f) S.toSubmodule - NonUnitalAlgHom.map_adjoin š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type u_1} (R : Type u) (A : Type v) {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (s : Set A) : NonUnitalSubalgebra.map f (NonUnitalAlgebra.adjoin R s) = NonUnitalAlgebra.adjoin R (āf '' s) - NonUnitalAlgHom.map_adjoin_singleton š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type u_1} (R : Type u) (A : Type v) {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (x : A) : NonUnitalSubalgebra.map f (NonUnitalAlgebra.adjoin R {x}) = NonUnitalAlgebra.adjoin R {f x} - NonUnitalAlgebra.map_iInf š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type u_1} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} [Nonempty ι] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (hf : Function.Injective āf) (S : ι ā NonUnitalSubalgebra R A) : NonUnitalSubalgebra.map f (⨠i, S i) = ⨠i, NonUnitalSubalgebra.map f (S i) - NonUnitalAlgebra.map_sup š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type u_1} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (S T : NonUnitalSubalgebra R A) : NonUnitalSubalgebra.map f (S ā T) = NonUnitalSubalgebra.map f S ā NonUnitalSubalgebra.map f T - NonUnitalAlgebra.map_inf š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type u_1} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (hf : Function.Injective āf) (S T : NonUnitalSubalgebra R A) : NonUnitalSubalgebra.map f (S ā T) = NonUnitalSubalgebra.map f S ā NonUnitalSubalgebra.map f T - NonUnitalAlgebra.map_top š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] (f : A āāā[R] B) : NonUnitalSubalgebra.map f ⤠= NonUnitalAlgHom.range f - NonUnitalAlgebra.map_bot š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] (f : A āāā[R] B) : NonUnitalSubalgebra.map f ā„ = ā„ - NonUnitalAlgHom.range_comp š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [NonUnitalNonAssocSemiring C] [Module R C] (f : A āāā[R] B) (g : B āāā[R] C) : NonUnitalAlgHom.range (g.comp f) = NonUnitalSubalgebra.map g (NonUnitalAlgHom.range f) - NonUnitalSubalgebra.map_map š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{R : Type u} {A : Type v} {B : Type w} {C : Type w'} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [NonUnitalNonAssocSemiring C] [Module R A] [Module R B] [Module R C] (S : NonUnitalSubalgebra R A) (g : B āāā[R] C) (f : A āāā[R] B) : NonUnitalSubalgebra.map g (NonUnitalSubalgebra.map f S) = NonUnitalSubalgebra.map (g.comp f) S - NonUnitalStarSubalgebra.map_toNonUnitalSubalgebra š Mathlib.Algebra.Star.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} : (NonUnitalStarSubalgebra.map f S).toNonUnitalSubalgebra = NonUnitalSubalgebra.map f S.toNonUnitalSubalgebra
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08