Loogle!
Result
Found 20 declarations mentioning NonUnitalSubring.map.
- NonUnitalSubring.map 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubring R) : NonUnitalSubring S - NonUnitalSubring.map_id 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) : NonUnitalSubring.map (NonUnitalRingHom.id R) s = s - NonUnitalRingHom.range_eq_map 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] (f : R →ₙ+* S) : f.range = NonUnitalSubring.map f ⊤ - NonUnitalSubring.coe_map 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubring R) : ↑(NonUnitalSubring.map f s) = ⇑f '' ↑s - NonUnitalSubring.map_bot 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] (f : R →ₙ+* S) : NonUnitalSubring.map f ⊥ = ⊥ - NonUnitalSubring.gc_map_comap 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) : GaloisConnection (NonUnitalSubring.map f) (NonUnitalSubring.comap f) - NonUnitalSubring.map_iInf 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] {ι : Sort u_1} [Nonempty ι] (f : F) (hf : Function.Injective ⇑f) (s : ι → NonUnitalSubring R) : NonUnitalSubring.map f (iInf s) = ⨅ i, NonUnitalSubring.map f (s i) - NonUnitalSubring.mem_map 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubring R} {y : S} : y ∈ NonUnitalSubring.map f s ↔ ∃ x ∈ s, f x = y - NonUnitalSubring.map_iSup 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] {ι : Sort u_1} (f : F) (s : ι → NonUnitalSubring R) : NonUnitalSubring.map f (iSup s) = ⨆ i, NonUnitalSubring.map f (s i) - NonUnitalRingHom.map_closure 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] (f : R →ₙ+* S) (s : Set R) : NonUnitalSubring.map f (NonUnitalSubring.closure s) = NonUnitalSubring.closure (⇑f '' s) - NonUnitalSubring.map_inf 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubring R) (f : F) (hf : Function.Injective ⇑f) : NonUnitalSubring.map f (s ⊓ t) = NonUnitalSubring.map f s ⊓ NonUnitalSubring.map f t - NonUnitalRingHom.map_range 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} {T : Type u_1} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [NonUnitalNonAssocRing T] (g : S →ₙ+* T) (f : R →ₙ+* S) : NonUnitalSubring.map g f.range = (g.comp f).range - NonUnitalSubring.map_le_iff_le_comap 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubring R} {t : NonUnitalSubring S} : NonUnitalSubring.map f s ≤ t ↔ s ≤ NonUnitalSubring.comap f t - NonUnitalSubring.map_sup 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubring R) (f : F) : NonUnitalSubring.map f (s ⊔ t) = NonUnitalSubring.map f s ⊔ NonUnitalSubring.map f t - NonUnitalSubring.map_map 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} {T : Type u_1} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [NonUnitalNonAssocRing T] (s : NonUnitalSubring R) (g : S →ₙ+* T) (f : R →ₙ+* S) : NonUnitalSubring.map g (NonUnitalSubring.map f s) = NonUnitalSubring.map (g.comp f) s - NonUnitalSubring.equivMapOfInjective 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubring R) (f : F) (hf : Function.Injective ⇑f) : ↥s ≃+* ↥(NonUnitalSubring.map f s) - NonUnitalSubring.mem_map_equiv 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] {f : R ≃+* S} {K : NonUnitalSubring R} {x : S} : x ∈ NonUnitalSubring.map (↑f) K ↔ f.symm x ∈ K - NonUnitalSubring.comap_equiv_eq_map_symm 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] (f : R ≃+* S) (K : NonUnitalSubring S) : NonUnitalSubring.comap (↑f) K = NonUnitalSubring.map f.symm K - NonUnitalSubring.map_equiv_eq_comap_symm 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] (f : R ≃+* S) (K : NonUnitalSubring R) : NonUnitalSubring.map (↑f) K = NonUnitalSubring.comap f.symm K - NonUnitalSubring.coe_equivMapOfInjective_apply 📋 Mathlib.RingTheory.NonUnitalSubring.Basic
{F : Type w} {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [NonUnitalNonAssocRing S] [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubring R) (f : F) (hf : Function.Injective ⇑f) (x : ↥s) : ↑((s.equivMapOfInjective f hf) x) = f ↑x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08