Loogle!
Result
Found 25 declarations mentioning NonUnitalSubsemiring.map.
- NonUnitalSubsemiring.map š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubsemiring R) : NonUnitalSubsemiring S - NonUnitalSubsemiring.map_id š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} [NonUnitalNonAssocSemiring R] (s : NonUnitalSubsemiring R) : NonUnitalSubsemiring.map (NonUnitalRingHom.id R) s = s - NonUnitalSubsemiring.map_bot š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) : NonUnitalSubsemiring.map f ā„ = ā„ - NonUnitalRingHom.srange_eq_map š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) : NonUnitalRingHom.srange f = NonUnitalSubsemiring.map f ⤠- NonUnitalRingHom.map_sclosure š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] {F : Type u_1} [FunLike F R S] [NonUnitalNonAssocSemiring S] [NonUnitalRingHomClass F R S] (f : F) (s : Set R) : NonUnitalSubsemiring.map f (NonUnitalSubsemiring.closure s) = NonUnitalSubsemiring.closure (āf '' s) - NonUnitalSubsemiring.map.congr_simp š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f fā : F) (e_f : f = fā) (s sā : NonUnitalSubsemiring R) (e_s : s = sā) : NonUnitalSubsemiring.map f s = NonUnitalSubsemiring.map fā sā - NonUnitalSubsemiring.coe_map š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) (s : NonUnitalSubsemiring R) : ā(NonUnitalSubsemiring.map f s) = āf '' ās - NonUnitalSubsemiring.gc_map_comap š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) : GaloisConnection (NonUnitalSubsemiring.map f) (NonUnitalSubsemiring.comap f) - NonUnitalSubsemiring.map_iInf š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {ι : Sort u_2} [Nonempty ι] (f : F) (hf : Function.Injective āf) (s : ι ā NonUnitalSubsemiring R) : NonUnitalSubsemiring.map f (iInf s) = ⨠i, NonUnitalSubsemiring.map f (s i) - NonUnitalSubsemiring.mem_map š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubsemiring R} {y : S} : y ā NonUnitalSubsemiring.map f s ā ā x ā s, f x = y - NonUnitalSubsemiring.map_iSup š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {ι : Sort u_2} (f : F) (s : ι ā NonUnitalSubsemiring R) : NonUnitalSubsemiring.map f (iSup s) = ⨠i, NonUnitalSubsemiring.map f (s i) - NonUnitalSubsemiring.map_inf š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective āf) : NonUnitalSubsemiring.map f (s ā t) = NonUnitalSubsemiring.map f s ā NonUnitalSubsemiring.map f t - NonUnitalSubsemiring.map_le_iff_le_comap š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] {f : F} {s : NonUnitalSubsemiring R} {t : NonUnitalSubsemiring S} : NonUnitalSubsemiring.map f s ⤠t ā s ⤠NonUnitalSubsemiring.comap f t - NonUnitalRingHom.map_srange š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} {T : Type w} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] [NonUnitalNonAssocSemiring T] (g : S āā+* T) (f : R āā+* S) : NonUnitalSubsemiring.map g (NonUnitalRingHom.srange f) = NonUnitalRingHom.srange (g.comp f) - NonUnitalSubsemiring.map_sup š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s t : NonUnitalSubsemiring R) (f : F) : NonUnitalSubsemiring.map f (s ā t) = NonUnitalSubsemiring.map f s ā NonUnitalSubsemiring.map f t - NonUnitalSubsemiring.map_map š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} {T : Type w} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] [NonUnitalNonAssocSemiring T] {F : Type u_1} {G : Type u_2} [FunLike F R S] [NonUnitalRingHomClass F R S] [FunLike G S T] [NonUnitalRingHomClass G S T] (s : NonUnitalSubsemiring R) (g : G) (f : F) : NonUnitalSubsemiring.map (āg) (NonUnitalSubsemiring.map (āf) s) = NonUnitalSubsemiring.map ((āg).comp āf) s - NonUnitalSubsemiring.equivMapOfInjective š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective āf) : ā„s ā+* ā„(NonUnitalSubsemiring.map f s) - NonUnitalSubsemiring.mem_map_equiv š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {f : R ā+* S} {K : NonUnitalSubsemiring R} {x : S} : x ā NonUnitalSubsemiring.map (āf) K ā f.symm x ā K - NonUnitalSubsemiring.comap_equiv_eq_map_symm š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R ā+* S) (K : NonUnitalSubsemiring S) : NonUnitalSubsemiring.comap (āf) K = NonUnitalSubsemiring.map f.symm K - NonUnitalSubsemiring.map_equiv_eq_comap_symm š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R ā+* S) (K : NonUnitalSubsemiring R) : NonUnitalSubsemiring.map (āf) K = NonUnitalSubsemiring.comap f.symm K - RingEquiv.nonUnitalSubsemiringMap š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R ā+* S) (s : NonUnitalSubsemiring R) : ā„s ā+* ā„(NonUnitalSubsemiring.map e.toNonUnitalRingHom s) - NonUnitalSubsemiring.coe_equivMapOfInjective_apply š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] {F : Type u_1} [FunLike F R S] [NonUnitalRingHomClass F R S] (s : NonUnitalSubsemiring R) (f : F) (hf : Function.Injective āf) (x : ā„s) : ā((s.equivMapOfInjective f hf) x) = f āx - RingEquiv.nonUnitalSubsemiringMap_apply_coe š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R ā+* S) (s : NonUnitalSubsemiring R) (x : āās.toAddSubmonoid) : ā((e.nonUnitalSubsemiringMap s) x) = e āx - RingEquiv.nonUnitalSubsemiringMap_symm_apply_coe š Mathlib.RingTheory.NonUnitalSubsemiring.Basic
{R : Type u} {S : Type v} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (e : R ā+* S) (s : NonUnitalSubsemiring R) (y : ā(āāe.toAddEquiv '' ās.toAddSubmonoid)) : ā((e.nonUnitalSubsemiringMap s).symm y) = (āe).symm āy - NonUnitalSubalgebra.map_toNonUnitalSubsemiring š Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} : (NonUnitalSubalgebra.map f S).toNonUnitalSubsemiring = NonUnitalSubsemiring.map (āf) S.toNonUnitalSubsemiring
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177