Loogle!
Result
Found 586 declarations mentioning Order.succ. Of these, 453 have a name containing "succ". Of these, only the first 200 are shown.
- Order.succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] : α → α - Order.succ_mono 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] : Monotone Order.succ - Order.wcovBy_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] (a : α) : a ⩿ Order.succ a - Order.succ.eq_1 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] : Order.succ = SuccOrder.succ - Order.le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] (a : α) : a ≤ Order.succ a - Order.succ_strictMono 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] : StrictMono Order.succ - Order.gc_pred_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [PredOrder α] : GaloisConnection Order.pred Order.succ - Order.le_succ_iterate 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] (k : ℕ) (x : α) : x ≤ Order.succ^[k] x - Order.covBy_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : a ⋖ Order.succ a - Order.lt_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : a < Order.succ a - IsMax.of_succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : Order.succ a ≤ a → IsMax a - IsMax.succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : IsMax a → Order.succ a ≤ a - Order.le_succ_of_wcovBy 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (h : a ⩿ b) : b ≤ Order.succ a - Order.max_of_succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : Order.succ a ≤ a → IsMax a - WCovBy.le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (h : a ⩿ b) : b ≤ Order.succ a - Order.covBy_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (h : ¬IsMax a) : a ⋖ Order.succ a - Order.le_succ_pred 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [PredOrder α] (a : α) : a ≤ Order.succ (Order.pred a) - Order.lt_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : ¬IsMax a → a < Order.succ a - Order.pred_succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [PredOrder α] [SuccOrder α] (a : α) : Order.pred (Order.succ a) ≤ a - Order.succ_le_iff_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : Order.succ a ≤ a ↔ IsMax a - Order.lt_succ_iff_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} : a < Order.succ a ↔ ¬IsMax a - Order.succ_le_of_lt 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} : a < b → Order.succ a ≤ b - LT.lt.succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} : a < b → Order.succ a ≤ b - IsMax.succ_eq 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} : IsMax a → Order.succ a = a - Order.Ici_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : Set.Ici (Order.succ a) = Set.Ioi a - Order.succ_eq_iff_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} : Order.succ a = a ↔ IsMax a - WithTop.instSuccOrder 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [(a : α) → Decidable (Order.succ a = a)] : SuccOrder (WithTop α) - CovBy.succ_eq 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} (h : a ⋖ b) : Order.succ a = b - Order.Ici_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) : Set.Ici (Order.succ a) = Set.Ioi a - Order.Iic_subset_Iio_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : Set.Iic a ⊆ Set.Iio (Order.succ a) - Order.succ_eq_of_covBy 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} (h : a ⋖ b) : Order.succ a = b - Order.Icc_succ_left 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Icc (Order.succ a) b = Set.Ioc a b - Order.Ico_succ_left 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ico (Order.succ a) b = Set.Ioo a b - Order.succ_le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (h : a ≤ b) : Order.succ a ≤ Order.succ b - Order.Iic_subset_Iio_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) : Set.Iic a ⊆ Set.Iio (Order.succ a) - Order.lt_succ_of_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : a ≤ b → a < Order.succ b - Order.Icc_subset_Ico_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Icc a b ⊆ Set.Ico a (Order.succ b) - Order.Icc_succ_left_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) : Set.Icc (Order.succ a) b = Set.Ioc a b - Order.Ico_succ_left_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) : Set.Ico (Order.succ a) b = Set.Ioo a b - Order.Ioc_subset_Ioo_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ioc a b ⊆ Set.Ioo a (Order.succ b) - Order.succ_le_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a ≤ b ↔ a < b - Order.lt_succ_of_le_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (hab : b ≤ a) (ha : ¬IsMax a) : b < Order.succ a - Order.Icc_subset_Ico_succ_right_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (hb : ¬IsMax b) : Set.Icc a b ⊆ Set.Ico a (Order.succ b) - Order.Ioc_subset_Ioo_succ_right_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (hb : ¬IsMax b) : Set.Ioc a b ⊆ Set.Ioo a (Order.succ b) - Order.le_succ_iff_pred_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [PredOrder α] [SuccOrder α] {a b : α} : b ≤ Order.succ a ↔ Order.pred b ≤ a - Order.pred_le_iff_le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] [PredOrder α] {a b : α} : Order.pred a ≤ b ↔ a ≤ Order.succ b - Order.succ_le_iff_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) : Order.succ a ≤ b ↔ a < b - Order.succ_lt_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (hab : a < b) : Order.succ a < Order.succ b - WithBot.orderSucc_coe 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] (a : α) : Order.succ ↑a = ↑(Order.succ a) - Order.pred_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] [NoMaxOrder α] (a : α) : Order.pred (Order.succ a) = a - Order.succ_eq_iff_covBy 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a = b ↔ a ⋖ b - Order.succ_lt_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a b : α} (h : a < b) (hb : ¬IsMax b) : Order.succ a < Order.succ b - Order.succ_ne_bot 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderBot α] [Nontrivial α] (a : α) : Order.succ a ≠ ⊥ - Order.succ_pred 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] [NoMinOrder α] (a : α) : Order.succ (Order.pred a) = a - Order.pred_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] {a : α} (h : ¬IsMax a) : Order.pred (Order.succ a) = a - Order.succ_pred_of_not_isMin 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] {a : α} (h : ¬IsMin a) : Order.succ (Order.pred a) = a - Order.le_iff_eq_or_succ_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} : a ≤ b ↔ a = b ∨ Order.succ a ≤ b - Order.le_iff_eq_or_succ_le' 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} : a ≤ b ↔ b = a ∨ Order.succ a ≤ b - WithBot.orderSucc_bot 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] : Order.succ ⊥ = ↑⊥ - Order.bot_lt_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderBot α] [Nontrivial α] (a : α) : ⊥ < Order.succ a - Order.succ_eq_sInf 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [CompleteLattice α] [SuccOrder α] (a : α) : Order.succ a = sInf (Set.Ioi a) - Order.succ_top 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [OrderTop α] : Order.succ ⊤ = ⊤ - Order.isMax_iterate_succ_of_eq_of_ne 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {n m : ℕ} (h_eq : Order.succ^[n] a = Order.succ^[m] a) (h_ne : n ≠ m) : IsMax (Order.succ^[n] a) - Order.isMax_iterate_succ_of_eq_of_lt 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [SuccOrder α] {a : α} {n m : ℕ} (h_eq : Order.succ^[n] a = Order.succ^[m] a) (h_lt : n < m) : IsMax (Order.succ^[n] a) - Order.lt_succ_iff_ne_top 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} [OrderTop α] : a < Order.succ a ↔ a ≠ ⊤ - Order.succ_le_iff_eq_top 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a : α} [OrderTop α] : Order.succ a ≤ a ↔ a = ⊤ - Order.succ_injective 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] : Function.Injective Order.succ - Order.not_isMin_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [Nontrivial α] (a : α) : ¬IsMin (Order.succ a) - Order.le_and_le_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} : a ≤ b ∧ b ≤ Order.succ a ↔ b = a ∨ b = Order.succ a - Order.le_le_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} : a ≤ b ∧ b ≤ Order.succ a ↔ b = a ∨ b = Order.succ a - Order.le_succ_and_le_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] {a b : α} : b ≤ Order.succ a ∧ a ≤ b ↔ b = a ∨ b = Order.succ a - WithBot.succ_unbot 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] (a : WithBot α) (ha : a ≠ ⊥) : Order.succ (a.unbot ha) = (Order.succ a).unbot ⋯ - WithTop.succ_coe_of_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [(a : α) → Decidable (Order.succ a = a)] {a : α} (h : IsMax a) : Order.succ ↑a = ⊤ - WithTop.succ_coe 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [(a : α) → Decidable (Order.succ a = a)] [NoMaxOrder α] {a : α} : Order.succ ↑a = ↑(Order.succ a) - WithTop.succ_coe_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [(a : α) → Decidable (Order.succ a = a)] {a : α} (h : ¬IsMax a) : Order.succ ↑a = ↑(Order.succ a) - Order.succ_eq_csInf 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [ConditionallyCompleteLattice α] [SuccOrder α] [NoMaxOrder α] (a : α) : Order.succ a = sInf (Set.Ioi a) - isMax_of_succ_notMem 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_3} [PartialOrder α] {s : Set α} [s.OrdConnected] [SuccOrder α] {a : ↑s} (h : Order.succ ↑a ∉ s) : IsMax a - Order.le_of_lt_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} : a < Order.succ b → a ≤ b - Order.pred_succ_iterate_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] (i : α) (n : ℕ) (hin : ¬IsMax (Order.succ^[n - 1] i)) : Order.pred^[n] (Order.succ^[n] i) = i - Order.succ_pred_iterate_of_not_isMin 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [PartialOrder α] [SuccOrder α] [PredOrder α] (i : α) (n : ℕ) (hin : ¬IsMin (Order.pred^[n - 1] i)) : Order.succ^[n] (Order.pred^[n] i) = i - Order.succ_eq_iInf 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [CompleteLattice α] [SuccOrder α] (a : α) : Order.succ a = ⨅ b, ⨅ (_ : b > a), b - Order.succ_ne_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : a ≠ b → Order.succ a ≠ Order.succ b - Order.succ_eq_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a = Order.succ b ↔ a = b - Order.succ_ne_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a ≠ Order.succ b ↔ a ≠ b - succ_notMem_iff_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_3} [PartialOrder α] {s : Set α} [s.OrdConnected] [SuccOrder α] [NoMaxOrder α] {a : ↑s} : Order.succ ↑a ∉ s ↔ IsMax a - Order.Iio_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a : α) : Set.Iio (Order.succ a) = Set.Iic a - Order.Iio_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) : Set.Iio (Order.succ a) = Set.Iic a - Order.Ico_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ico a (Order.succ b) = Set.Icc a b - Order.Ioo_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ioo a (Order.succ b) = Set.Ioc a b - Order.Ico_succ_right_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (hb : ¬IsMax b) : Set.Ico a (Order.succ b) = Set.Icc a b - Order.Ioo_succ_right_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (hb : ¬IsMax b) : Set.Ioo a (Order.succ b) = Set.Ioc a b - Order.lt_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : a < Order.succ b ↔ a ≤ b - Order.Iic_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] (a : α) : Set.Iic (Order.succ a) = insert (Order.succ a) (Set.Iic a) - Order.Iio_succ_eq_insert 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a : α) : Set.Iio (Order.succ a) = insert a (Set.Iio a) - Order.lt_succ_iff_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) : b < Order.succ a ↔ b ≤ a - Order.Iio_succ_eq_insert_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} (h : ¬IsMax a) : Set.Iio (Order.succ a) = insert a (Set.Iio a) - Order.le_succ_iff_eq_or_le 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} : a ≤ Order.succ b ↔ a = Order.succ b ∨ a ≤ b - Order.lt_succ_iff_eq_or_gt 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : a < Order.succ b ↔ b = a ∨ a < b - Order.lt_succ_iff_eq_or_lt 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : a < Order.succ b ↔ a = b ∨ a < b - Order.Ioo_eq_empty_iff_le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Set.Ioo a b = ∅ ↔ b ≤ Order.succ a - Order.lt_succ_iff_eq_or_lt_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (hb : ¬IsMax b) : a < Order.succ b ↔ a = b ∨ a < b - Order.succ_eq_succ_iff_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) : Order.succ a = Order.succ b ↔ a = b - Order.le_of_succ_le_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a ≤ Order.succ b → a ≤ b - Order.lt_of_succ_lt_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a < Order.succ b → a < b - Order.succ_le_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a ≤ Order.succ b ↔ a ≤ b - Order.succ_lt_succ_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] : Order.succ a < Order.succ b ↔ a < b - coe_succ_of_mem 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_3} [PartialOrder α] {s : Set α} [s.OrdConnected] [SuccOrder α] {a : ↑s} (h : Order.succ ↑a ∈ s) : ↑(Order.succ a) = Order.succ ↑a - Order.Ico_succ_right_eq_insert 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a ≤ b) : Set.Ico a (Order.succ b) = insert b (Set.Ico a b) - Order.Ioo_succ_right_eq_insert 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a < b) : Set.Ioo a (Order.succ b) = insert b (Set.Ioo a b) - Order.Ico_succ_right_eq_insert_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h₁ : a ≤ b) (h₂ : ¬IsMax b) : Set.Ico a (Order.succ b) = insert b (Set.Ico a b) - Order.Ioo_succ_right_eq_insert_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h₁ : a < b) (h₂ : ¬IsMax b) : Set.Ioo a (Order.succ b) = insert b (Set.Ioo a b) - OrderIso.map_succ 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} {β : Type u_2} [PartialOrder α] [SuccOrder α] [PartialOrder β] [SuccOrder β] (f : α ≃o β) (a : α) : f (Order.succ a) = Order.succ (f a) - Order.succ_le_succ_iff_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) : Order.succ a ≤ Order.succ b ↔ a ≤ b - Order.succ_lt_succ_iff_of_not_isMax 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (ha : ¬IsMax a) (hb : ¬IsMax b) : Order.succ a < Order.succ b ↔ a < b - Order.Icc_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a ≤ Order.succ b) : Set.Icc a (Order.succ b) = insert (Order.succ b) (Set.Icc a b) - Order.Ioc_succ_right 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a < Order.succ b) : Set.Ioc a (Order.succ b) = insert (Order.succ b) (Set.Ioc a b) - Order.lt_succ_bot_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} [OrderBot α] [NoMaxOrder α] : a < Order.succ ⊥ ↔ a = ⊥ - Order.le_succ_bot_iff 📋 Mathlib.Order.SuccPred.Basic
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} [OrderBot α] : a ≤ Order.succ ⊥ ↔ a = ⊥ ∨ a = Order.succ ⊥ - Set.Ico_succ_left_eq_Ioo 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] (a b : α) : Set.Ico (Order.succ a) b = Set.Ioo a b - Set.Ici_succ_eq_Ioi 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a : α) : Set.Ici (Order.succ a) = Set.Ioi a - Set.Iio_succ_eq_Iic 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (b : α) : Set.Iio (Order.succ b) = Set.Iic b - Set.Ici_succ_eq_Ioi_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) : Set.Ici (Order.succ a) = Set.Ioi a - Set.Iio_succ_eq_Iic_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) : Set.Iio (Order.succ b) = Set.Iic b - Set.Icc_succ_left_eq_Ioc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Icc (Order.succ a) b = Set.Ioc a b - Set.Ico_succ_right_eq_Icc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ico a (Order.succ b) = Set.Icc a b - Set.Ioo_succ_right_eq_Ioc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ioo a (Order.succ b) = Set.Ioc a b - Set.Icc_succ_left_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) (b : α) : Set.Icc (Order.succ a) b = Set.Ioc a b - Set.Ico_succ_right_eq_Icc_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Set.Ico a (Order.succ b) = Set.Icc a b - Set.Ioo_succ_right_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Set.Ioo a (Order.succ b) = Set.Ioc a b - Set.insert_Icc_succ_left_eq_Icc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) : insert a (Set.Icc (Order.succ a) b) = Set.Icc a b - Set.insert_Ico_succ_left_eq_Ico 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a < b) : insert a (Set.Ico (Order.succ a) b) = Set.Ico a b - Set.Icc_succ_pred_eq_Ioo 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [PredOrder α] [Nontrivial α] (a b : α) : Set.Icc (Order.succ a) (Order.pred b) = Set.Ioo a b - Set.Ico_succ_succ_eq_Ioc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Set.Ico (Order.succ a) (Order.succ b) = Set.Ioc a b - Set.Ico_succ_succ_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Set.Ico (Order.succ a) (Order.succ b) = Set.Ioc a b - Set.insert_Ioc_succ_left_eq_Ioc 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a < b) : insert (Order.succ a) (Set.Ioc (Order.succ a) b) = Set.Ioc a b - Set.insert_Ico_right_eq_Ico_succ 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a ≤ b) : insert b (Set.Ico a b) = Set.Ico a (Order.succ b) - Set.insert_Ico_right_eq_Ico_succ_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) (hb : ¬IsMax b) : insert b (Set.Ico a b) = Set.Ico a (Order.succ b) - Set.insert_Icc_right_eq_Icc_succ 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a ≤ Order.succ b) : insert (Order.succ b) (Set.Icc a b) = Set.Icc a (Order.succ b) - Set.insert_Ioc_right_eq_Ioc_succ 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a ≤ b) : insert (Order.succ b) (Set.Ioc a b) = Set.Ioc a (Order.succ b) - Set.insert_Ioc_right_eq_Ioc_succ_of_not_isMax 📋 Mathlib.Order.Interval.Set.SuccPred
{α : Type u_1} [LinearOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) (hb : ¬IsMax b) : insert (Order.succ b) (Set.Ioc a b) = Set.Ioc a (Order.succ b) - Finset.Ico_succ_left_eq_Ioo 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] (a b : α) : Finset.Ico (Order.succ a) b = Finset.Ioo a b - Finset.Ici_succ_eq_Ioi 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrderTop α] [SuccOrder α] [NoMaxOrder α] (a : α) : Finset.Ici (Order.succ a) = Finset.Ioi a - Finset.Iio_succ_eq_Iic 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrderBot α] [SuccOrder α] [NoMaxOrder α] (b : α) : Finset.Iio (Order.succ b) = Finset.Iic b - Finset.Ici_succ_eq_Ioi_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrderTop α] [SuccOrder α] {a : α} (ha : ¬IsMax a) : Finset.Ici (Order.succ a) = Finset.Ioi a - Finset.Iio_succ_eq_Iic_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrderBot α] [SuccOrder α] {b : α} (hb : ¬IsMax b) : Finset.Iio (Order.succ b) = Finset.Iic b - Finset.Icc_succ_left_eq_Ioc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Finset.Icc (Order.succ a) b = Finset.Ioc a b - Finset.Ico_succ_right_eq_Icc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Finset.Ico a (Order.succ b) = Finset.Icc a b - Finset.Ioo_succ_right_eq_Ioc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Finset.Ioo a (Order.succ b) = Finset.Ioc a b - Finset.Icc_succ_left_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a : α} (ha : ¬IsMax a) (b : α) : Finset.Icc (Order.succ a) b = Finset.Ioc a b - Finset.Ico_succ_right_eq_Icc_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Finset.Ico a (Order.succ b) = Finset.Icc a b - Finset.Ioo_succ_right_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Finset.Ioo a (Order.succ b) = Finset.Ioc a b - Finset.Icc_succ_pred_eq_Ioo 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] [PredOrder α] [Nontrivial α] (a b : α) : Finset.Icc (Order.succ a) (Order.pred b) = Finset.Ioo a b - Finset.Ico_succ_succ_eq_Ioc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] [NoMaxOrder α] (a b : α) : Finset.Ico (Order.succ a) (Order.succ b) = Finset.Ioc a b - Finset.Ico_succ_succ_eq_Ioc_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {b : α} (hb : ¬IsMax b) (a : α) : Finset.Ico (Order.succ a) (Order.succ b) = Finset.Ioc a b - Finset.insert_Icc_succ_left_eq_Icc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) : insert a (Finset.Icc (Order.succ a) b) = Finset.Icc a b - Finset.insert_Ico_succ_left_eq_Ico 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a < b) : insert a (Finset.Ico (Order.succ a) b) = Finset.Ico a b - Finset.insert_Ioc_succ_left_eq_Ioc 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a < b) : insert (Order.succ a) (Finset.Ioc (Order.succ a) b) = Finset.Ioc a b - Finset.insert_Ico_right_eq_Ico_succ 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a ≤ b) : insert b (Finset.Ico a b) = Finset.Ico a (Order.succ b) - Finset.insert_Ico_right_eq_Ico_succ_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) (hb : ¬IsMax b) : insert b (Finset.Ico a b) = Finset.Ico a (Order.succ b) - Finset.insert_Icc_right_eq_Icc_succ 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a ≤ Order.succ b) : insert (Order.succ b) (Finset.Icc a b) = Finset.Icc a (Order.succ b) - Finset.insert_Ioc_right_eq_Ioc_succ 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} [NoMaxOrder α] (h : a ≤ b) : insert (Order.succ b) (Finset.Ioc a b) = Finset.Ioc a (Order.succ b) - Finset.insert_Ioc_right_eq_Ioc_succ_of_not_isMax 📋 Mathlib.Order.Interval.Finset.SuccPred
{α : Type u_1} [LinearOrder α] [LocallyFiniteOrder α] [SuccOrder α] {a b : α} (h : a ≤ b) (hb : ¬IsMax b) : insert (Order.succ b) (Finset.Ioc a b) = Finset.Ioc a (Order.succ b) - IsSuccArchimedean.exists_succ_iterate_of_le 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {inst✝ : Preorder α} {inst✝¹ : SuccOrder α} [self : IsSuccArchimedean α] {a b : α} (h : a ≤ b) : ∃ n, Order.succ^[n] a = b - IsSuccArchimedean.mk 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} [Preorder α] [SuccOrder α] (exists_succ_iterate_of_le : ∀ {a b : α}, a ≤ b → ∃ n, Order.succ^[n] a = b) : IsSuccArchimedean α - LE.le.exists_succ_iterate 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} (h : a ≤ b) : ∃ n, Order.succ^[n] a = b - exists_succ_iterate_iff_le 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} : (∃ n, Order.succ^[n] a = b) ↔ a ≤ b - Succ.rec_iff 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {p : α → Prop} (hsucc : ∀ (a : α), p a ↔ p (Order.succ a)) {a b : α} (h : a ≤ b) : p a ↔ p b - Succ.rec_bot 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [Preorder α] [OrderBot α] [SuccOrder α] [IsSuccArchimedean α] (p : α → Prop) (hbot : p ⊥) (hsucc : ∀ (a : α), p a → p (Order.succ a)) (a : α) : p a - antitone_of_succ_le 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : α → β} (hf : ∀ (a : α), ¬IsMax a → f (Order.succ a) ≤ f a) : Antitone f - monotone_of_le_succ 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : α → β} (hf : ∀ (a : α), ¬IsMax a → f a ≤ f (Order.succ a)) : Monotone f - strictAnti_of_succ_lt 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : α → β} (hf : ∀ (a : α), ¬IsMax a → f (Order.succ a) < f a) : StrictAnti f - strictMono_of_lt_succ 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {f : α → β} (hf : ∀ (a : α), ¬IsMax a → f a < f (Order.succ a)) : StrictMono f - Succ.rec_linear 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {p : α → Prop} (hsucc : ∀ (a : α), p a ↔ p (Order.succ a)) (a b : α) : p a ↔ p b - Succ.rec 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [Preorder α] [SuccOrder α] [IsSuccArchimedean α] {m : α} {P : (n : α) → m ≤ n → Prop} (rfl : P m ⋯) (succ : ∀ (n : α) (hmn : m ≤ n), P n hmn → P (Order.succ n) ⋯) ⦃n : α⦄ (hmn : m ≤ n) : P n hmn - exists_succ_iterate_or 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [LinearOrder α] [SuccOrder α] [IsSuccArchimedean α] {a b : α} : (∃ n, Order.succ^[n] a = b) ∨ ∃ n, Order.succ^[n] b = a - antitoneOn_of_succ_le 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : α → β} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax a → a ∈ s → Order.succ a ∈ s → f (Order.succ a) ≤ f a) : AntitoneOn f s - monotoneOn_of_le_succ 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : α → β} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax a → a ∈ s → Order.succ a ∈ s → f a ≤ f (Order.succ a)) : MonotoneOn f s - strictAntiOn_of_succ_lt 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : α → β} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax a → a ∈ s → Order.succ a ∈ s → f (Order.succ a) < f a) : StrictAntiOn f s - strictMonoOn_of_lt_succ 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_3} {β : Type u_4} [PartialOrder α] [Preorder β] [SuccOrder α] [IsSuccArchimedean α] {s : Set α} {f : α → β} (hs : s.OrdConnected) (hf : ∀ (a : α), ¬IsMax a → a ∈ s → Order.succ a ∈ s → f a < f (Order.succ a)) : StrictMonoOn f s - succ_max 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [LinearOrder α] [SuccOrder α] (a b : α) : Order.succ (max a b) = max (Order.succ a) (Order.succ b) - succ_min 📋 Mathlib.Order.SuccPred.Archimedean
{α : Type u_1} [LinearOrder α] [SuccOrder α] (a b : α) : Order.succ (min a b) = min (Order.succ a) (Order.succ b) - Order.not_isSuccLimit_succ 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : ¬Order.IsSuccLimit (Order.succ a) - Order.IsSuccLimit.isMax 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] (h : Order.IsSuccLimit (Order.succ a)) : IsMax a - Order.not_isSuccLimit_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] (ha : ¬IsMax a) : ¬Order.IsSuccLimit (Order.succ a) - Order.not_isSuccPrelimit_succ 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} [Preorder α] [SuccOrder α] [NoMaxOrder α] (a : α) : ¬Order.IsSuccPrelimit (Order.succ a) - Order.IsSuccPrelimit.isMax 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] (h : Order.IsSuccPrelimit (Order.succ a)) : IsMax a - Order.not_isSuccPrelimit_succ_of_not_isMax 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] (ha : ¬IsMax a) : ¬Order.IsSuccPrelimit (Order.succ a) - Order.IsSuccLimit.succ_ne 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] [NoMaxOrder α] (h : Order.IsSuccLimit a) (b : α) : Order.succ b ≠ a - Order.IsSuccPrelimit.succ_ne 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [Preorder α] [SuccOrder α] [NoMaxOrder α] (h : Order.IsSuccPrelimit a) (b : α) : Order.succ b ≠ a - Order.isSuccPrelimit_of_succ_ne 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [PartialOrder α] [SuccOrder α] (h : ∀ (b : α), Order.succ b ≠ a) : Order.IsSuccPrelimit a - Order.mem_range_succ_of_not_isSuccPrelimit 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [PartialOrder α] [SuccOrder α] (h : ¬Order.IsSuccPrelimit a) : a ∈ Set.range Order.succ - Order.mem_range_succ_or_isSuccPrelimit 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} [PartialOrder α] [SuccOrder α] (a : α) : a ∈ Set.range Order.succ ∨ Order.IsSuccPrelimit a - Order.isSuccPrelimit_iff_succ_ne 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [PartialOrder α] [SuccOrder α] [NoMaxOrder α] : Order.IsSuccPrelimit a ↔ ∀ (b : α), Order.succ b ≠ a - Order.IsSuccLimit.succ_lt 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a b : α} [PartialOrder α] [SuccOrder α] (hb : Order.IsSuccLimit b) (ha : a < b) : Order.succ a < b - Order.isMin_or_mem_range_succ_or_isSuccLimit 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} [PartialOrder α] [SuccOrder α] (a : α) : IsMin a ∨ a ∈ Set.range Order.succ ∨ Order.IsSuccLimit a - Order.IsSuccLimit.succ_lt_iff 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a b : α} [PartialOrder α] [SuccOrder α] (hb : Order.IsSuccLimit b) : Order.succ a < b ↔ a < b - Order.isSuccPrelimitRecOn 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} (b : α) {motive : α → Sort u_2} [PartialOrder α] [SuccOrder α] (succ : (a : α) → ¬IsMax a → motive (Order.succ a)) (isSuccPrelimit : (a : α) → Order.IsSuccPrelimit a → motive a) : motive b - Order.isSuccPrelimit_of_succ_lt 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {b : α} [PartialOrder α] [SuccOrder α] (H : ∀ a < b, Order.succ a < b) : Order.IsSuccPrelimit b - Order.not_isSuccPrelimit_iff 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [PartialOrder α] [SuccOrder α] : ¬Order.IsSuccPrelimit a ↔ ∃ b, ¬IsMax b ∧ Order.succ b = a - Order.not_isSuccPrelimit_iff' 📋 Mathlib.Order.SuccPred.Limit
{α : Type u_1} {a : α} [PartialOrder α] [SuccOrder α] [NoMaxOrder α] : ¬Order.IsSuccPrelimit a ↔ a ∈ Set.range Order.succ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454