Loogle!
Result
Found 171 declarations mentioning Order.succ and Ordinal.
- Ordinal.succ_ne_zero π Mathlib.SetTheory.Ordinal.Basic
(o : Ordinal.{u_1}) : Order.succ o β 0 - Cardinal.lt_ord_succ_card π Mathlib.SetTheory.Ordinal.Basic
(o : Ordinal.{u_1}) : o < (Order.succ o.card).ord - Ordinal.succ_zero π Mathlib.SetTheory.Ordinal.Basic
: Order.succ 0 = 1 - Ordinal.succ_pos π Mathlib.SetTheory.Ordinal.Basic
(o : Ordinal.{u_1}) : 0 < Order.succ o - Ordinal.natCast_succ π Mathlib.SetTheory.Ordinal.Basic
(n : β) : βn.succ = Order.succ βn - Ordinal.add_one_eq_succ π Mathlib.SetTheory.Ordinal.Basic
(o : Ordinal.{u_1}) : o + 1 = Order.succ o - Cardinal.card_le_iff π Mathlib.SetTheory.Ordinal.Basic
{o : Ordinal.{u_1}} {c : Cardinal.{u_1}} : o.card β€ c β o < (Order.succ c).ord - Ordinal.card_succ π Mathlib.SetTheory.Ordinal.Basic
(o : Ordinal.{u_1}) : (Order.succ o).card = o.card + 1 - Ordinal.add_succ π Mathlib.SetTheory.Ordinal.Basic
(oβ oβ : Ordinal.{u_1}) : oβ + Order.succ oβ = Order.succ (oβ + oβ) - Ordinal.succ_one π Mathlib.SetTheory.Ordinal.Basic
: Order.succ 1 = 2 - Ordinal.le_enum_succ π Mathlib.SetTheory.Ordinal.Basic
{o : Ordinal.{u_1}} (a : (Order.succ o).ToType) : a β€ (Ordinal.enum fun x1 x2 => x1 < x2) β¨o, β―β© - Ordinal.pred_succ π Mathlib.SetTheory.Ordinal.Arithmetic
(o : Ordinal.{u_4}) : (Order.succ o).pred = o - Ordinal.pred_succ_gi π Mathlib.SetTheory.Ordinal.Arithmetic
: GaloisInsertion Ordinal.pred Order.succ - Ordinal.self_le_succ_pred π Mathlib.SetTheory.Ordinal.Arithmetic
(o : Ordinal.{u_4}) : o β€ Order.succ o.pred - Ordinal.lift_succ π Mathlib.SetTheory.Ordinal.Arithmetic
(a : Ordinal.{v}) : Ordinal.lift.{u, v} (Order.succ a) = Order.succ (Ordinal.lift.{u, v} a) - Ordinal.succ_pred_eq_iff_not_isSuccPrelimit π Mathlib.SetTheory.Ordinal.Arithmetic
{o : Ordinal.{u_4}} : Order.succ o.pred = o β Β¬Order.IsSuccPrelimit o - Ordinal.lt_pred_iff_succ_lt π Mathlib.SetTheory.Ordinal.Arithmetic
{a b : Ordinal.{u_4}} : a < b.pred β Order.succ a < b - Ordinal.pred_le_iff_le_succ π Mathlib.SetTheory.Ordinal.Arithmetic
{a b : Ordinal.{u_4}} : a.pred β€ b β a β€ Order.succ b - Ordinal.one_add_natCast π Mathlib.SetTheory.Ordinal.Arithmetic
(m : β) : 1 + βm = β(Order.succ m) - Ordinal.zero_or_succ_or_isSuccLimit π Mathlib.SetTheory.Ordinal.Arithmetic
(o : Ordinal.{u_4}) : o = 0 β¨ o β Set.range Order.succ β¨ Order.IsSuccLimit o - Ordinal.limitRecOn π Mathlib.SetTheory.Ordinal.Arithmetic
{motive : Ordinal.{u_5} β Sort u_4} (o : Ordinal.{u_5}) (zero : motive 0) (succ : (o : Ordinal.{u_5}) β motive o β motive (Order.succ o)) (limit : (o : Ordinal.{u_5}) β Order.IsSuccLimit o β ((o' : Ordinal.{u_5}) β o' < o β motive o') β motive o) : motive o - Ordinal.one_add_ofNat π Mathlib.SetTheory.Ordinal.Arithmetic
(m : β) [m.AtLeastTwo] : 1 + OfNat.ofNat m = Order.succ (OfNat.ofNat m) - Ordinal.has_succ_of_type_succ_lt π Mathlib.SetTheory.Ordinal.Arithmetic
{Ξ± : Type u_4} {r : Ξ± β Ξ± β Prop} [wo : IsWellOrder Ξ± r] (h : β a < Ordinal.type r, Order.succ a < Ordinal.type r) (x : Ξ±) : β y, r x y - Ordinal.lt_mul_succ_div π Mathlib.SetTheory.Ordinal.Arithmetic
(a : Ordinal.{u_4}) {b : Ordinal.{u_4}} (h : b β 0) : a < b * Order.succ (a / b) - Ordinal.mul_succ π Mathlib.SetTheory.Ordinal.Arithmetic
(a b : Ordinal.{u_4}) : a * Order.succ b = a * b + a - Ordinal.toType_noMax_of_succ_lt π Mathlib.SetTheory.Ordinal.Arithmetic
{o : Ordinal.{u_4}} (ho : β a < o, Order.succ a < o) : NoMaxOrder o.ToType - Ordinal.div_le π Mathlib.SetTheory.Ordinal.Arithmetic
{a b c : Ordinal.{u_4}} (b0 : b β 0) : a / b β€ c β a < b * Order.succ c - Ordinal.lt_div π Mathlib.SetTheory.Ordinal.Arithmetic
{a b c : Ordinal.{u_4}} (h : c β 0) : a < b / c β c * Order.succ a β€ b - Ordinal.limitRecOn_zero π Mathlib.SetTheory.Ordinal.Arithmetic
{motive : Ordinal.{u_4} β Sort u_5} (Hβ : motive 0) (Hβ : (o : Ordinal.{u_4}) β motive o β motive (Order.succ o)) (Hβ : (o : Ordinal.{u_4}) β Order.IsSuccLimit o β ((o' : Ordinal.{u_4}) β o' < o β motive o') β motive o) : Ordinal.limitRecOn 0 Hβ Hβ Hβ = Hβ - Ordinal.limitRecOn_succ π Mathlib.SetTheory.Ordinal.Arithmetic
{motive : Ordinal.{u_4} β Sort u_5} (o : Ordinal.{u_4}) (Hβ : motive 0) (Hβ : (o : Ordinal.{u_4}) β motive o β motive (Order.succ o)) (Hβ : (o : Ordinal.{u_4}) β Order.IsSuccLimit o β ((o' : Ordinal.{u_4}) β o' < o β motive o') β motive o) : Ordinal.limitRecOn (Order.succ o) Hβ Hβ Hβ = Hβ o (Ordinal.limitRecOn o Hβ Hβ Hβ) - Ordinal.orderTopToTypeSucc π Mathlib.SetTheory.Ordinal.Arithmetic
(o : Ordinal.{u_4}) : OrderTop (Order.succ o).ToType - Ordinal.add_mul_succ π Mathlib.SetTheory.Ordinal.Arithmetic
{a b : Ordinal.{u_4}} (c : Ordinal.{u_4}) (ba : b + a = a) : (a + b) * Order.succ c = a * Order.succ c + b - Ordinal.limitRecOn_limit π Mathlib.SetTheory.Ordinal.Arithmetic
{motive : Ordinal.{u_4} β Sort u_5} (o : Ordinal.{u_4}) (Hβ : motive 0) (Hβ : (o : Ordinal.{u_4}) β motive o β motive (Order.succ o)) (Hβ : (o : Ordinal.{u_4}) β Order.IsSuccLimit o β ((o' : Ordinal.{u_4}) β o' < o β motive o') β motive o) (h : Order.IsSuccLimit o) : Ordinal.limitRecOn o Hβ Hβ Hβ = Hβ o h fun x _h => Ordinal.limitRecOn x Hβ Hβ Hβ - Ordinal.boundedLimitRecOn π Mathlib.SetTheory.Ordinal.Arithmetic
{l : Ordinal.{u_5}} (lLim : Order.IsSuccLimit l) {motive : β(Set.Iio l) β Sort u_4} (o : β(Set.Iio l)) (zero : motive β¨0, β―β©) (succ : (o : β(Set.Iio l)) β motive o β motive β¨Order.succ βo, β―β©) (limit : (o : β(Set.Iio l)) β Order.IsSuccLimit βo β ((o' : β(Set.Iio l)) β o' < o β motive o') β motive o) : motive o - Ordinal.boundedLimitRec_zero π Mathlib.SetTheory.Ordinal.Arithmetic
{l : Ordinal.{u_4}} (lLim : Order.IsSuccLimit l) {motive : β(Set.Iio l) β Sort u_5} (Hβ : motive β¨0, β―β©) (Hβ : (o : β(Set.Iio l)) β motive o β motive β¨Order.succ βo, β―β©) (Hβ : (o : β(Set.Iio l)) β Order.IsSuccLimit βo β ((o' : β(Set.Iio l)) β o' < o β motive o') β motive o) : Ordinal.boundedLimitRecOn lLim β¨0, β―β© Hβ Hβ Hβ = Hβ - Ordinal.boundedLimitRec_limit π Mathlib.SetTheory.Ordinal.Arithmetic
{l : Ordinal.{u_4}} (lLim : Order.IsSuccLimit l) {motive : β(Set.Iio l) β Sort u_5} (o : β(Set.Iio l)) (Hβ : motive β¨0, β―β©) (Hβ : (o : β(Set.Iio l)) β motive o β motive β¨Order.succ βo, β―β©) (Hβ : (o : β(Set.Iio l)) β Order.IsSuccLimit βo β ((o' : β(Set.Iio l)) β o' < o β motive o') β motive o) (oLim : Order.IsSuccLimit βo) : Ordinal.boundedLimitRecOn lLim o Hβ Hβ Hβ = Hβ o oLim fun x x_1 => Ordinal.boundedLimitRecOn lLim x Hβ Hβ Hβ - Ordinal.boundedLimitRec_succ π Mathlib.SetTheory.Ordinal.Arithmetic
{l : Ordinal.{u_4}} (lLim : Order.IsSuccLimit l) {motive : β(Set.Iio l) β Sort u_5} (o : β(Set.Iio l)) (Hβ : motive β¨0, β―β©) (Hβ : (o : β(Set.Iio l)) β motive o β motive β¨Order.succ βo, β―β©) (Hβ : (o : β(Set.Iio l)) β Order.IsSuccLimit βo β ((o' : β(Set.Iio l)) β o' < o β motive o') β motive o) : Ordinal.boundedLimitRecOn lLim β¨Order.succ βo, β―β© Hβ Hβ Hβ = Hβ o (Ordinal.boundedLimitRecOn lLim o Hβ Hβ Hβ) - Ordinal.boundedLimitRecOn.eq_1 π Mathlib.SetTheory.Ordinal.Arithmetic
{l : Ordinal.{u_5}} (lLim : Order.IsSuccLimit l) {motive : β(Set.Iio l) β Sort u_4} (o : β(Set.Iio l)) (zero : motive β¨0, β―β©) (succ : (o : β(Set.Iio l)) β motive o β motive β¨Order.succ βo, β―β©) (limit : (o : β(Set.Iio l)) β Order.IsSuccLimit βo β ((o' : β(Set.Iio l)) β o' < o β motive o') β motive o) : Ordinal.boundedLimitRecOn lLim o zero succ limit = Ordinal.limitRecOn (motive := fun p => (h : p < l) β motive β¨p, hβ©) (βo) (fun x => zero) (fun o ih h => succ β¨o, β―β© (ih β―)) (fun _o ho ih x => limit β¨_o, xβ© ho fun _o' h => ih (β_o') h β―) β― - Ordinal.enum_succ_eq_top π Mathlib.SetTheory.Ordinal.Arithmetic
{o : Ordinal.{u_4}} : (Ordinal.enum fun x1 x2 => x1 < x2) β¨o, β―β© = β€ - Ordinal.lsub_const π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} [Nonempty ΞΉ] (o : Ordinal.{max u_5 u_4}) : (Ordinal.lsub fun x => o) = Order.succ o - Ordinal.lsub_unique π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} [Unique ΞΉ] (f : ΞΉ β Ordinal.{max u_5 u_4}) : Ordinal.lsub f = Order.succ (f default) - Ordinal.bsup_id_succ π Mathlib.SetTheory.Ordinal.Family
(o : Ordinal.{u}) : ((Order.succ o).bsup fun x x_1 => x) = o - Ordinal.iSup_eq_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup (Order.succ β f) = Ordinal.lsub f - Ordinal.sup_eq_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup (Order.succ β f) = Ordinal.lsub f - Ordinal.lsub_le_succ_iSup π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Ordinal.lsub f β€ Order.succ (iSup f) - Ordinal.lsub_le_sup_succ π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Ordinal.lsub f β€ Order.succ (iSup f) - Ordinal.blsub_le_bsup_succ π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : o.blsub f β€ Order.succ (o.bsup f) - Ordinal.blsub_const π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (ho : o β 0) (a : Ordinal.{max u v}) : (o.blsub fun x x_1 => a) = Order.succ a - Ordinal.bsup_eq_blsub_or_succ_bsup_eq_blsub π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : o.bsup f = o.blsub f β¨ Order.succ (o.bsup f) = o.blsub f - Ordinal.sInf_compl_lt_ord_succ π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u} (f : ΞΉ β Ordinal.{u}) : sInf (Set.range f)αΆ < (Order.succ (Cardinal.mk ΞΉ)).ord - Ordinal.bsup_eq_blsub π Mathlib.SetTheory.Ordinal.Family
(o : Ordinal.{u}) (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : (o.bsup fun a ha => Order.succ (f a ha)) = o.blsub f - Ordinal.sInf_compl_lt_lift_ord_succ π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u} (f : ΞΉ β Ordinal.{max u v}) : sInf (Set.range f)αΆ < Ordinal.lift.{v, u} (Order.succ (Cardinal.mk ΞΉ)).ord - Ordinal.bsup_id_limit π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} : (β a < o, Order.succ a < o) β (o.bsup fun x x_1 => x) = o - Ordinal.iSup_eq_lsub_or_succ_iSup_eq_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup f = Ordinal.lsub f β¨ Order.succ (iSup f) = Ordinal.lsub f - Ordinal.sup_eq_lsub_or_sup_succ_eq_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup f = Ordinal.lsub f β¨ Order.succ (iSup f) = Ordinal.lsub f - Ordinal.succ_iSup_eq_lsub_iff π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Order.succ (iSup f) = Ordinal.lsub f β β i, f i = iSup f - Ordinal.sup_succ_eq_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Order.succ (iSup f) = Ordinal.lsub f β β i, f i = iSup f - Ordinal.blsub_one π Mathlib.SetTheory.Ordinal.Family
(f : (a : Ordinal.{u_4}) β a < 1 β Ordinal.{max u_4 u_5}) : Ordinal.blsub 1 f = Order.succ (f 0 β―) - Ordinal.iSup_eq_lsub_iff π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup f = Ordinal.lsub f β β a < Ordinal.lsub f, Order.succ a < Ordinal.lsub f - Ordinal.succ_iSup_le_lsub_iff π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Order.succ (iSup f) β€ Ordinal.lsub f β β i, f i = iSup f - Ordinal.sup_eq_lsub_iff_succ π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : iSup f = Ordinal.lsub f β β a < Ordinal.lsub f, Order.succ a < Ordinal.lsub f - Ordinal.sup_succ_le_lsub π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} (f : ΞΉ β Ordinal.{max u_5 u_4}) : Order.succ (iSup f) β€ Ordinal.lsub f β β i, f i = iSup f - Ordinal.bsup_eq_blsub_iff_succ π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : o.bsup f = o.blsub f β β a < o.blsub f, Order.succ a < o.blsub f - Ordinal.isNormal_iff_lt_succ_and_blsub_eq π Mathlib.SetTheory.Ordinal.Family
{f : Ordinal.{u} β Ordinal.{max u v}} : Order.IsNormal f β (β (a : Ordinal.{u}), f a < f (Order.succ a)) β§ β (o : Ordinal.{u}), Order.IsSuccLimit o β (o.blsub fun x x_1 => f x) = f o - Ordinal.isNormal_iff_lt_succ_and_bsup_eq π Mathlib.SetTheory.Ordinal.Family
{f : Ordinal.{u} β Ordinal.{max u v}} : Order.IsNormal f β (β (a : Ordinal.{u}), f a < f (Order.succ a)) β§ β (o : Ordinal.{u}), Order.IsSuccLimit o β (o.bsup fun x x_1 => f x) = f o - Ordinal.bsup_succ_eq_blsub π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : Order.succ (o.bsup f) = o.blsub f β β i, β (hi : i < o), f i hi = o.bsup f - Ordinal.bsup_not_succ_of_ne_bsup π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} {f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}} (hf : β {i : Ordinal.{u}} (h : i < o), f i h β o.bsup f) (a : Ordinal.{max u v}) : a < o.bsup f β Order.succ a < o.bsup f - Ordinal.bsup_eq_blsub_of_lt_succ_limit π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (ho : Order.IsSuccLimit o) {f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}} (hf : β (a : Ordinal.{u}) (ha : a < o), f a ha < f (Order.succ a) β―) : o.bsup f = o.blsub f - Ordinal.bsup_succ_le_blsub π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (f : (a : Ordinal.{u}) β a < o β Ordinal.{max u v}) : Order.succ (o.bsup f) β€ o.blsub f β β i, β (hi : i < o), f i hi = o.bsup f - Ordinal.IsNormal.eq_iff_zero_and_succ π Mathlib.SetTheory.Ordinal.Family
{f g : Ordinal.{u} β Ordinal.{u}} (hf : Order.IsNormal f) (hg : Order.IsNormal g) : f = g β f 0 = g 0 β§ β (a : Ordinal.{u}), f a = g a β f (Order.succ a) = g (Order.succ a) - Ordinal.succ_lt_iSup_of_ne_iSup π Mathlib.SetTheory.Ordinal.Family
{ΞΉ : Type u_4} {f : ΞΉ β Ordinal.{u}} [Small.{u, u_4} ΞΉ] (hf : β (i : ΞΉ), f i β iSup f) {a : Ordinal.{u}} (hao : a < iSup f) : Order.succ a < iSup f - Ordinal.bsup_succ_of_mono π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u_4}} {f : (a : Ordinal.{u_4}) β a < Order.succ o β Ordinal.{max u_4 u_5}} (hf : β {i j : Ordinal.{u_4}} (hi : i < Order.succ o) (hj : j < Order.succ o), i β€ j β f i hi β€ f j hj) : (Order.succ o).bsup f = f o β― - Ordinal.blsub_succ_of_mono π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} {f : (a : Ordinal.{u}) β a < Order.succ o β Ordinal.{max u v}} (hf : β {i j : Ordinal.{u}} (hi : i < Order.succ o) (hj : j < Order.succ o), i β€ j β f i hi β€ f j hj) : (Order.succ o).blsub f = Order.succ (f o β―) - Ordinal.lt_bsup_of_limit π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u_4}} {f : (a : Ordinal.{u_4}) β a < o β Ordinal.{max u_4 u_5}} (hf : β {a a' : Ordinal.{u_4}} (ha : a < o) (ha' : a' < o), a < a' β f a ha < f a' ha') (ho : β a < o, Order.succ a < o) (i : Ordinal.{u_4}) (h : i < o) : f i h < o.bsup f - Ordinal.iSup_typein_limit π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (ho : β a < o, Order.succ a < o) : iSup β(Ordinal.typein fun x1 x2 => x1 < x2).toRelEmbedding = o - Ordinal.sup_typein_limit π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u}} (ho : β a < o, Order.succ a < o) : iSup β(Ordinal.typein fun x1 x2 => x1 < x2).toRelEmbedding = o - Ordinal.iSup_typein_succ π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u_4}} : iSup β(Ordinal.typein fun x1 x2 => x1 < x2).toRelEmbedding = o - Ordinal.sup_typein_succ π Mathlib.SetTheory.Ordinal.Family
{o : Ordinal.{u_4}} : iSup β(Ordinal.typein fun x1 x2 => x1 < x2).toRelEmbedding = o - Ordinal.enumOrd_succ_le π Mathlib.SetTheory.Ordinal.Enum
{a b : Ordinal.{u}} {s : Set Ordinal.{u}} (hs : Β¬BddAbove s) (ha : a β s) (hb : Ordinal.enumOrd s b < a) : Ordinal.enumOrd s (Order.succ b) β€ a - Ordinal.isInitial_succ π Mathlib.SetTheory.Cardinal.Aleph
{o : Ordinal.{u_1}} : (Order.succ o).IsInitial β o < Ordinal.omega0 - Cardinal.succ_aleph0 π Mathlib.SetTheory.Cardinal.Aleph
: Order.succ Cardinal.aleph0 = Cardinal.aleph 1 - Cardinal.beth_succ π Mathlib.SetTheory.Cardinal.Aleph
(o : Ordinal.{u_1}) : Cardinal.beth (Order.succ o) = 2 ^ Cardinal.beth o - Cardinal.preBeth_succ π Mathlib.SetTheory.Cardinal.Aleph
(o : Ordinal.{u_1}) : Cardinal.preBeth (Order.succ o) = 2 ^ Cardinal.preBeth o - Cardinal.aleph_succ π Mathlib.SetTheory.Cardinal.Aleph
(o : Ordinal.{u_1}) : Cardinal.aleph (Order.succ o) = Order.succ (Cardinal.aleph o) - Cardinal.preAleph_succ π Mathlib.SetTheory.Cardinal.Aleph
(o : Ordinal.{u_1}) : Cardinal.preAleph (Order.succ o) = Order.succ (Cardinal.preAleph o) - Ordinal.lt_opow_succ_log_self π Mathlib.SetTheory.Ordinal.Exponential
{b : Ordinal.{u_1}} (hb : 1 < b) (x : Ordinal.{u_1}) : x < b ^ Order.succ (Ordinal.log b x) - Ordinal.opow_succ π Mathlib.SetTheory.Ordinal.Exponential
(a b : Ordinal.{u_1}) : a ^ Order.succ b = a ^ b * a - Ordinal.opow_lt_opow_left_of_succ π Mathlib.SetTheory.Ordinal.Exponential
{a b c : Ordinal.{u_1}} (ab : a < b) : a ^ Order.succ c < b ^ Order.succ c - Ordinal.succ_log_def π Mathlib.SetTheory.Ordinal.Exponential
{b x : Ordinal.{u_1}} (hb : 1 < b) (hx : x β 0) : Order.succ (Ordinal.log b x) = sInf {o | x < b ^ o} - Ordinal.lt_omega0_opow_succ π Mathlib.SetTheory.Ordinal.Exponential
{a b : Ordinal.{u_1}} : a < Ordinal.omega0 ^ Order.succ b β β n, a < Ordinal.omega0 ^ b * βn - Ordinal.log_eq_iff π Mathlib.SetTheory.Ordinal.Exponential
{b x : Ordinal.{u_1}} (hb : 1 < b) (hx : x β 0) (y : Ordinal.{u_1}) : Ordinal.log b x = y β b ^ y β€ x β§ x < b ^ Order.succ y - Ordinal.opow_mul_add_lt_opow_succ π Mathlib.SetTheory.Ordinal.Exponential
{b u v w : Ordinal.{u_1}} (hvb : v < b) (hw : w < b ^ u) : b ^ u * v + w < b ^ Order.succ u - Ordinal.opow_mul_add_lt_opow_mul_succ π Mathlib.SetTheory.Ordinal.Exponential
{b u w : Ordinal.{u_1}} (v : Ordinal.{u_1}) (hw : w < b ^ u) : b ^ u * v + w < b ^ u * Order.succ v - Ordinal.deriv_succ π Mathlib.SetTheory.Ordinal.FixedPoint
(f : Ordinal.{u_1} β Ordinal.{u_1}) (o : Ordinal.{u_1}) : Ordinal.deriv f (Order.succ o) = Ordinal.nfp f (Order.succ (Ordinal.deriv f o)) - Ordinal.derivFamily_succ π Mathlib.SetTheory.Ordinal.FixedPoint
{ΞΉ : Type u_1} (f : ΞΉ β Ordinal.{u_2} β Ordinal.{u_2}) (o : Ordinal.{u_2}) : Ordinal.derivFamily f (Order.succ o) = Ordinal.nfpFamily f (Order.succ (Ordinal.derivFamily f o)) - Ordinal.nfp_mul_opow_omega0_add π Mathlib.SetTheory.Ordinal.FixedPoint
{a c : Ordinal.{u_1}} (b : Ordinal.{u_1}) (ha : 0 < a) (hc : 0 < c) (hca : c β€ a ^ Ordinal.omega0) : Ordinal.nfp (fun x => a * x) (a ^ Ordinal.omega0 * b + c) = a ^ Ordinal.omega0 * Order.succ b - Ordinal.cof_succ π Mathlib.SetTheory.Cardinal.Cofinality
(o : Ordinal.{u_1}) : (Order.succ o).cof = 1 - Ordinal.cof_eq_one_iff_is_succ π Mathlib.SetTheory.Cardinal.Cofinality
{o : Ordinal.{u}} : o.cof = 1 β β a, o = Order.succ a - Ordinal.IsFundamentalSequence.succ π Mathlib.SetTheory.Cardinal.Cofinality
{o : Ordinal.{u}} : (Order.succ o).IsFundamentalSequence 1 fun x x_1 => o - Cardinal.isRegular_aleph_succ π Mathlib.SetTheory.Cardinal.Regular
(o : Ordinal.{u_1}) : (Cardinal.aleph (Order.succ o)).IsRegular - Cardinal.isRegular_preAleph_succ π Mathlib.SetTheory.Cardinal.Regular
{o : Ordinal.{u_1}} (h : Ordinal.omega0 β€ o) : (Cardinal.preAleph (Order.succ o)).IsRegular - Ordinal.mul_eq_opow_log_succ π Mathlib.SetTheory.Ordinal.Principal
{a b : Ordinal.{u}} (ha : a β 0) (hb : Ordinal.Principal (fun x1 x2 => x1 * x2) b) (hbβ : 2 < b) : a * b = b ^ Order.succ (Ordinal.log b a) - IsWellFounded.rank_eq π Mathlib.SetTheory.Ordinal.Rank
{Ξ± : Type u} (r : Ξ± β Ξ± β Prop) [hwf : IsWellFounded Ξ± r] (a : Ξ±) : IsWellFounded.rank r a = β¨ b, Order.succ (IsWellFounded.rank r βb) - Acc.rank_eq π Mathlib.SetTheory.Ordinal.Rank
{Ξ± : Type u} {a : Ξ±} {r : Ξ± β Ξ± β Prop} (h : Acc r a) : h.rank = β¨ b, Order.succ β―.rank - Ordinal.nadd_one π Mathlib.SetTheory.Ordinal.NaturalOps
(a : Ordinal.{u_1}) : a.nadd 1 = Order.succ a - Ordinal.nmul_succ π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u_1}) : a.nmul (Order.succ b) = (a.nmul b).nadd a - Ordinal.one_nadd π Mathlib.SetTheory.Ordinal.NaturalOps
(a : Ordinal.{u}) : Ordinal.nadd 1 a = Order.succ a - Ordinal.succ_nmul π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u_1}) : (Order.succ a).nmul b = (a.nmul b).nadd b - Ordinal.nadd_succ π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u}) : a.nadd (Order.succ b) = Order.succ (a.nadd b) - Ordinal.succ_nadd π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u}) : (Order.succ a).nadd b = Order.succ (a.nadd b) - Ordinal.nadd.eq_1 π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u}) : a.nadd b = max (β¨ x, Order.succ ((βx).nadd b)) (β¨ x, Order.succ (a.nadd βx)) - Ordinal.nadd.eq_def π Mathlib.SetTheory.Ordinal.NaturalOps
(a b : Ordinal.{u}) : a.nadd b = max (β¨ x, Order.succ ((βx).nadd b)) (β¨ x, Order.succ (a.nadd βx)) - NatOrdinal.succ_def π Mathlib.SetTheory.Ordinal.NaturalOps
(a : NatOrdinal) : Order.succ a = Ordinal.toNatOrdinal (NatOrdinal.toOrdinal a + 1) - Nimber.succ_def π Mathlib.SetTheory.Nimber.Basic
(a : Nimber) : Order.succ a = Ordinal.toNimber (Nimber.toOrdinal a + 1) - OrdinalApprox.exists_gfpApprox_eq_gfpApprox π Mathlib.SetTheory.Ordinal.FixedPointApproximants
{Ξ± : Type u} [CompleteLattice Ξ±] (f : Ξ± βo Ξ±) (x : Ξ±) : β a < (Order.succ (Cardinal.mk Ξ±)).ord, β b < (Order.succ (Cardinal.mk Ξ±)).ord, a β b β§ OrdinalApprox.gfpApprox f x a = OrdinalApprox.gfpApprox f x b - OrdinalApprox.exists_lfpApprox_eq_lfpApprox π Mathlib.SetTheory.Ordinal.FixedPointApproximants
{Ξ± : Type u} [CompleteLattice Ξ±] (f : Ξ± βo Ξ±) (x : Ξ±) : β a < (Order.succ (Cardinal.mk Ξ±)).ord, β b < (Order.succ (Cardinal.mk Ξ±)).ord, a β b β§ OrdinalApprox.lfpApprox f x a = OrdinalApprox.lfpApprox f x b - ONote.fundamentalSequenceProp_inl_some π Mathlib.SetTheory.Ordinal.Notation
(o a : ONote) : o.FundamentalSequenceProp (Sum.inl (some a)) β o.repr = Order.succ a.repr β§ (o.NF β a.NF) - ONote.FundamentalSequenceProp.eq_2 π Mathlib.SetTheory.Ordinal.Notation
(o a : ONote) : o.FundamentalSequenceProp (Sum.inl (some a)) = (o.repr = Order.succ a.repr β§ (o.NF β a.NF)) - ONote.repr_opow_auxβ π Mathlib.SetTheory.Ordinal.Notation
{a0 a' : ONote} [N0 : a0.NF] [Na' : a'.NF] (m : β) (d : Ordinal.omega0 β£ a'.repr) (e0 : a0.repr β 0) (h : a'.repr + βm < Ordinal.omega0 ^ a0.repr) (n : β+) (k : β) : have R := (ONote.opowAux 0 a0 (a0.oadd n a' * βm) k m).repr; (k β 0 β R < (Ordinal.omega0 ^ a0.repr) ^ Order.succ βk) β§ (Ordinal.omega0 ^ a0.repr) ^ βk * (Ordinal.omega0 ^ a0.repr * ββn + a'.repr) + R = (Ordinal.omega0 ^ a0.repr * ββn + a'.repr + βm) ^ Order.succ βk - Ordinal.veblen_succ π Mathlib.SetTheory.Ordinal.Veblen
(o : Ordinal.{u_1}) : Ordinal.veblen (Order.succ o) = Ordinal.deriv (Ordinal.veblen o) - Ordinal.veblenWith_succ π Mathlib.SetTheory.Ordinal.Veblen
{f : Ordinal.{u} β Ordinal.{u}} (hf : Order.IsNormal f) (o : Ordinal.{u}) : Ordinal.veblenWith f (Order.succ o) = Ordinal.deriv (Ordinal.veblenWith f o) - Ordinal.gamma_succ_eq_nfp π Mathlib.SetTheory.Ordinal.Veblen
(o : Ordinal.{u_1}) : (Order.succ o).gamma = Ordinal.nfp (fun x => Ordinal.veblen x 0) (Order.succ o.gamma) - Ordinal.epsilon_succ_eq_nfp π Mathlib.SetTheory.Ordinal.Veblen
(o : Ordinal.{u_1}) : (Order.succ o).epsilon = Ordinal.nfp (fun a => Ordinal.omega0 ^ a) (Order.succ o.epsilon) - PSet.rank_powerset π Mathlib.SetTheory.ZFC.Rank
(x : PSet.{u_1}) : x.powerset.rank = Order.succ x.rank - ZFSet.rank_powerset π Mathlib.SetTheory.ZFC.Rank
(x : ZFSet.{u_1}) : x.powerset.rank = Order.succ x.rank - PSet.rank_singleton π Mathlib.SetTheory.ZFC.Rank
(x : PSet.{u_1}) : {x}.rank = Order.succ x.rank - ZFSet.rank_singleton π Mathlib.SetTheory.ZFC.Rank
(x : ZFSet.{u_1}) : {x}.rank = Order.succ x.rank - PSet.le_succ_rank_sUnion π Mathlib.SetTheory.ZFC.Rank
(x : PSet.{u_1}) : x.rank β€ Order.succ (ββ x).rank - ZFSet.le_succ_rank_sUnion π Mathlib.SetTheory.ZFC.Rank
(x : ZFSet.{u_1}) : x.rank β€ Order.succ x.sUnion.rank - PSet.rank.eq_1 π Mathlib.SetTheory.ZFC.Rank
(Ξ± : Type u) (A : Ξ± β PSet.{u}) : (PSet.mk Ξ± A).rank = β¨ a, Order.succ (A a).rank - ZFSet.rank_range π Mathlib.SetTheory.ZFC.Rank
{Ξ± : Type u_1} [Small.{u, u_1} Ξ±] (f : Ξ± β ZFSet.{u}) : (ZFSet.range f).rank = β¨ i, Order.succ (f i).rank - PSet.rank.eq_def π Mathlib.SetTheory.ZFC.Rank
(xβ : PSet.{u}) : xβ.rank = match xβ with | PSet.mk Ξ± A => β¨ a, Order.succ (A a).rank - PSet.rank_insert π Mathlib.SetTheory.ZFC.Rank
(x y : PSet.{u_1}) : (insert x y).rank = max (Order.succ x.rank) y.rank - ZFSet.rank_insert π Mathlib.SetTheory.ZFC.Rank
(x y : ZFSet.{u_1}) : (insert x y).rank = max (Order.succ x.rank) y.rank - PSet.rank_pair π Mathlib.SetTheory.ZFC.Rank
(x y : PSet.{u_1}) : {x, y}.rank = max (Order.succ x.rank) (Order.succ y.rank) - ZFSet.rank_pair π Mathlib.SetTheory.ZFC.Rank
(x y : ZFSet.{u_1}) : {x, y}.rank = max (Order.succ x.rank) (Order.succ y.rank) - Ordinal.toZFSet_succ π Mathlib.SetTheory.ZFC.Ordinal
(o : Ordinal.{u_1}) : (Order.succ o).toZFSet = insert o.toZFSet o.toZFSet - ZFSet.vonNeumann_succ π Mathlib.SetTheory.ZFC.VonNeumann
(o : Ordinal.{u_1}) : ZFSet.vonNeumann (Order.succ o) = (ZFSet.vonNeumann o).powerset - ZFSet.mem_vonNeumann_succ π Mathlib.SetTheory.ZFC.VonNeumann
(x : ZFSet.{u_1}) : x β ZFSet.vonNeumann (Order.succ x.rank) - Profinite.NobelingProof.CC'β π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : β(Profinite.NobelingProof.C' C ho) β βC - Profinite.NobelingProof.C0_projOrd π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) {x : I β Bool} (hx : x β Profinite.NobelingProof.C0 C ho) : Profinite.NobelingProof.Proj (fun x => Profinite.NobelingProof.ord I x < o) x = x - Profinite.NobelingProof.C1_projOrd π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) {x : I β Bool} (hx : x β Profinite.NobelingProof.C1 C ho) : Profinite.NobelingProof.SwapTrue o (Profinite.NobelingProof.Proj (fun x => Profinite.NobelingProof.ord I x < o) x) = x - Profinite.NobelingProof.GoodProducts.sum_equiv π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : β(Profinite.NobelingProof.GoodProducts (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o)) β β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho) β β(Profinite.NobelingProof.GoodProducts C) - Profinite.NobelingProof.GoodProducts.union_succ π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Profinite.NobelingProof.GoodProducts C = Profinite.NobelingProof.GoodProducts (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o) βͺ Profinite.NobelingProof.GoodProducts.MaxProducts C ho - Profinite.NobelingProof.CC'β.congr_simp π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (aβ aβΒΉ : β(Profinite.NobelingProof.C' C ho)) : aβ = aβΒΉ β Profinite.NobelingProof.CC'β C hsC ho aβ = Profinite.NobelingProof.CC'β C hsC ho aβΒΉ - Profinite.NobelingProof.continuous_CC'β π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Continuous (Profinite.NobelingProof.CC'β C hsC ho) - Profinite.NobelingProof.CC'β.eq_1 π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (g : β(Profinite.NobelingProof.C' C ho)) : Profinite.NobelingProof.CC'β C hsC ho g = β¨Profinite.NobelingProof.SwapTrue o βg, β―β© - Profinite.NobelingProof.GoodProducts.head!_eq_o_of_maxProducts π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) [Inhabited I] (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) : (ββl).head! = Profinite.NobelingProof.term I ho - Profinite.NobelingProof.swapTrue_mem_C1 π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (f : β(Profinite.NobelingProof.Ο (Profinite.NobelingProof.C1 C ho) fun x => Profinite.NobelingProof.ord I x < o)) : Profinite.NobelingProof.SwapTrue o βf β Profinite.NobelingProof.C1 C ho - Profinite.NobelingProof.GoodProducts.chain'_cons_of_lt π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) (q : Profinite.NobelingProof.Products I) (hq : q < (βl).Tail) : List.IsChain (fun x x_1 => x > x_1) (Profinite.NobelingProof.term I ho :: βq) - Profinite.NobelingProof.GoodProducts.isChain_cons_of_lt π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) (q : Profinite.NobelingProof.Products I) (hq : q < (βl).Tail) : List.IsChain (fun x x_1 => x > x_1) (Profinite.NobelingProof.term I ho :: βq) - Profinite.NobelingProof.GoodProducts.max_eq_o_cons_tail π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) : ββl = Profinite.NobelingProof.term I ho :: β(βl).Tail - Profinite.NobelingProof.GoodProducts.good_lt_maxProducts π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (q : β(Profinite.NobelingProof.GoodProducts (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o))) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) : List.Lex (fun x1 x2 => x1 < x2) ββq ββl - Profinite.NobelingProof.Linear_CC' π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : LocallyConstant βC β€ ββ[β€] LocallyConstant β(Profinite.NobelingProof.C' C ho) β€ - Profinite.NobelingProof.Linear_CC'β π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : LocallyConstant βC β€ ββ[β€] LocallyConstant β(Profinite.NobelingProof.C' C ho) β€ - Profinite.NobelingProof.Linear_CC'.congr_simp π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Profinite.NobelingProof.Linear_CC' C hsC ho = Profinite.NobelingProof.Linear_CC' C hsC ho - Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : LinearIndependent β€ (Profinite.NobelingProof.GoodProducts.eval C) β LinearIndependent β€ (Profinite.NobelingProof.GoodProducts.SumEval C ho) - Profinite.NobelingProof.GoodProducts.span_sum π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Set.range (Profinite.NobelingProof.GoodProducts.eval C) = Set.range (Sum.elim (fun l => Profinite.NobelingProof.Products.eval C βl) fun l => Profinite.NobelingProof.Products.eval C βl) - Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Profinite.NobelingProof.GoodProducts.eval C β (Profinite.NobelingProof.GoodProducts.sum_equiv C hsC ho).toFun = Sum.elim (fun l => Profinite.NobelingProof.Products.eval C βl) fun l => Profinite.NobelingProof.Products.eval C βl - Profinite.NobelingProof.Linear_CC'β.eq_1 π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Profinite.NobelingProof.Linear_CC'β C hsC ho = LocallyConstant.comapβ β€ { toFun := Profinite.NobelingProof.CC'β C hsC ho, continuous_toFun := β― } - Profinite.NobelingProof.GoodProducts.max_eq_eval π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) : (Profinite.NobelingProof.Linear_CC' C hsC ho) (Profinite.NobelingProof.Products.eval C βl) = Profinite.NobelingProof.Products.eval (Profinite.NobelingProof.C' C ho) (βl).Tail - Profinite.NobelingProof.Products.max_eq_eval π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) [Inhabited I] (l : Profinite.NobelingProof.Products I) (hl : βl β []) (hlh : (βl).head! = Profinite.NobelingProof.term I ho) : (Profinite.NobelingProof.Linear_CC' C hsC ho) (Profinite.NobelingProof.Products.eval C l) = Profinite.NobelingProof.Products.eval (Profinite.NobelingProof.C' C ho) l.Tail - Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : (β(Profinite.NobelingProof.Linear_CC' C hsC ho) β fun l => Profinite.NobelingProof.Products.eval C βl) = fun l => Profinite.NobelingProof.Products.eval (Profinite.NobelingProof.C' C ho) (βl).Tail - Profinite.NobelingProof.succ_exact π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : { Xβ := ModuleCat.of β€ (LocallyConstant β(Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o) β€), Xβ := ModuleCat.of β€ (LocallyConstant βC β€), Xβ := ModuleCat.of β€ (LocallyConstant β(Profinite.NobelingProof.C' C ho) β€), f := ModuleCat.ofHom (Profinite.NobelingProof.Οs C o), g := ModuleCat.ofHom (Profinite.NobelingProof.Linear_CC' C hsC ho), zero := β― }.Exact - Profinite.NobelingProof.Linear_CC'.eq_1 π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) : Profinite.NobelingProof.Linear_CC' C hsC ho = Profinite.NobelingProof.Linear_CC'β C hsC ho - Profinite.NobelingProof.Linear_CC'β C ho - Profinite.NobelingProof.CC_comp_zero π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (y : LocallyConstant β(Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o) β€) : (Profinite.NobelingProof.Linear_CC' C hsC ho) ((Profinite.NobelingProof.Οs C o) y) = 0 - Profinite.NobelingProof.CC_exact π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) {f : LocallyConstant βC β€} (hf : (Profinite.NobelingProof.Linear_CC' C hsC ho) f = 0) : β y, (Profinite.NobelingProof.Οs C o) y = f - Profinite.NobelingProof.GoodProducts.MaxToGood π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (hβ : β€ β€ Submodule.span β€ (Set.range (Profinite.NobelingProof.GoodProducts.eval (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o)))) : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho) β β(Profinite.NobelingProof.GoodProducts (Profinite.NobelingProof.C' C ho)) - Profinite.NobelingProof.GoodProducts.maxToGood_injective π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (hβ : β€ β€ Submodule.span β€ (Set.range (Profinite.NobelingProof.GoodProducts.eval (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o)))) : Function.Injective (Profinite.NobelingProof.GoodProducts.MaxToGood C hC hsC ho hβ) - Profinite.NobelingProof.GoodProducts.maxTail_isGood π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (l : β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) (hβ : β€ β€ Submodule.span β€ (Set.range (Profinite.NobelingProof.GoodProducts.eval (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o)))) : Profinite.NobelingProof.Products.isGood (Profinite.NobelingProof.C' C ho) (βl).Tail - Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval π Mathlib.Topology.Category.Profinite.Nobeling.Successor
{I : Type u} (C : Set (I β Bool)) [LinearOrder I] [WellFoundedLT I] {o : Ordinal.{u}} (hC : IsClosed C) (hsC : Profinite.NobelingProof.contained C (Order.succ o)) (ho : o < Ordinal.type fun x1 x2 => x1 < x2) (hβ : β€ β€ Submodule.span β€ (Set.range (Profinite.NobelingProof.GoodProducts.eval (Profinite.NobelingProof.Ο C fun x => Profinite.NobelingProof.ord I x < o)))) : LinearIndependent β€ (Profinite.NobelingProof.GoodProducts.eval (Profinite.NobelingProof.C' C ho)) β LinearIndependent (ΞΉ := β(Profinite.NobelingProof.GoodProducts.MaxProducts C ho)) β€ (β(CategoryTheory.ConcreteCategory.hom (ModuleCat.ofHom (Profinite.NobelingProof.Linear_CC' C hsC ho))) β Profinite.NobelingProof.GoodProducts.SumEval C ho β Sum.inr)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454