Loogle!
Result
Found 25 declarations mentioning Orientation.map.
- Orientation.map_refl ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] (ฮน : Type u_4) : Orientation.map ฮน (LinearEquiv.refl R M) = Equiv.refl (Orientation R M ฮน) - Orientation.map ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ฮน : Type u_4) (e : M โโ[R] N) : Orientation R M ฮน โ Orientation R N ฮน - Orientation.map_of_isEmpty ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] (ฮน : Type u_4) [IsEmpty ฮน] (x : Orientation R M ฮน) (f : M โโ[R] M) : (Orientation.map ฮน f) x = x - Orientation.map_symm ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ฮน : Type u_4) (e : M โโ[R] N) : (Orientation.map ฮน e).symm = Orientation.map ฮน e.symm - Orientation.map_positiveOrientation_of_isEmpty ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ฮน : Type u_4) [IsEmpty ฮน] (f : M โโ[R] N) : (Orientation.map ฮน f) positiveOrientation = positiveOrientation - Basis.orientation_map ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ฮน : Type u_4} [Fintype ฮน] [DecidableEq ฮน] (e : Basis ฮน R M) (f : M โโ[R] N) : (e.map f).orientation = (Orientation.map ฮน f) e.orientation - Orientation.map.eq_1 ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ฮน : Type u_4) (e : M โโ[R] N) : Orientation.map ฮน e = Module.Ray.map (AlternatingMap.domLCongr R R ฮน R e) - Orientation.map_neg ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ฮน : Type u_4} (f : M โโ[R] N) (x : Orientation R M ฮน) : (Orientation.map ฮน f) (-x) = -(Orientation.map ฮน f) x - Orientation.map_eq_iff_det_pos ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [FiniteDimensional R M] (x : Orientation R M ฮน) (f : M โโ[R] M) (h : Fintype.card ฮน = Module.finrank R M) : (Orientation.map ฮน f) x = x โ 0 < LinearMap.det โf - Orientation.map_eq_neg_iff_det_neg ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] (x : Orientation R M ฮน) (f : M โโ[R] M) (h : Fintype.card ฮน = Module.finrank R M) : (Orientation.map ฮน f) x = -x โ LinearMap.det โf < 0 - Orientation.map_apply ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommSemiring R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (ฮน : Type u_4) (e : M โโ[R] N) (v : M [โ^ฮน]โโ[R] R) (hv : v โ 0) : (Orientation.map ฮน e) (rayOfNeZero R v hv) = rayOfNeZero R (v.compLinearMap โe.symm) โฏ - Basis.map_orientation_eq_det_inv_smul ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_4} [Finite ฮน] (e : Basis ฮน R M) (x : Orientation R M ฮน) (f : M โโ[R] M) : (Orientation.map ฮน f) x = (LinearEquiv.det f)โปยน โข x - Orientation.map_eq_det_inv_smul ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [FiniteDimensional R M] (x : Orientation R M ฮน) (f : M โโ[R] M) (h : Fintype.card ฮน = Module.finrank R M) : (Orientation.map ฮน f) x = (LinearEquiv.det f)โปยน โข x - Orientation.volumeForm_map ๐ Mathlib.Analysis.InnerProductSpace.Orientation
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] {n : โ} [_i : Fact (Module.finrank โ E = n)] (o : Orientation โ E (Fin n)) {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] [Fact (Module.finrank โ F = n)] (ฯ : E โโแตข[โ] F) (x : Fin n โ F) : ((Orientation.map (Fin n) ฯ.toLinearEquiv) o).volumeForm x = o.volumeForm (โฯ.symm โ x) - Orientation.rightAngleRotation_map' ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] [Fact (Module.finrank โ F = 2)] (ฯ : E โโแตข[โ] F) : ((Orientation.map (Fin 2) ฯ.toLinearEquiv) o).rightAngleRotation = (ฯ.symm.trans o.rightAngleRotation).trans ฯ - Orientation.rightAngleRotation_map ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] [hF : Fact (Module.finrank โ F = 2)] (ฯ : E โโแตข[โ] F) (x : F) : ((Orientation.map (Fin 2) ฯ.toLinearEquiv) o).rightAngleRotation x = ฯ (o.rightAngleRotation (ฯ.symm x)) - Orientation.rightAngleRotation_map_complex ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) (f : E โโแตข[โ] โ) (hf : (Orientation.map (Fin 2) f.toLinearEquiv) o = Complex.orientation) (x : E) : f (o.rightAngleRotation x) = Complex.I * f x - Orientation.areaForm_map_complex ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) (f : E โโแตข[โ] โ) (hf : (Orientation.map (Fin 2) f.toLinearEquiv) o = Complex.orientation) (x y : E) : (o.areaForm x) y = ((starRingEnd โ) (f x) * f y).im - Orientation.kahler_map_complex ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) (f : E โโแตข[โ] โ) (hf : (Orientation.map (Fin 2) f.toLinearEquiv) o = Complex.orientation) (x y : E) : (o.kahler x) y = f y * (starRingEnd โ) (f x) - Orientation.areaForm_map ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] [hF : Fact (Module.finrank โ F = 2)] (ฯ : E โโแตข[โ] F) (x y : F) : (((Orientation.map (Fin 2) ฯ.toLinearEquiv) o).areaForm x) y = (o.areaForm (ฯ.symm x)) (ฯ.symm y) - Orientation.kahler_map ๐ Mathlib.Analysis.InnerProductSpace.TwoDim
{E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace โ E] [Fact (Module.finrank โ E = 2)] (o : Orientation โ E (Fin 2)) {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace โ F] [hF : Fact (Module.finrank โ F = 2)] (ฯ : E โโแตข[โ] F) (x y : F) : (((Orientation.map (Fin 2) ฯ.toLinearEquiv) o).kahler x) y = (o.kahler (ฯ.symm x)) (ฯ.symm y) - Orientation.oangle_map ๐ Mathlib.Geometry.Euclidean.Angle.Oriented.Basic
{V : Type u_1} {V' : Type u_2} [NormedAddCommGroup V] [NormedAddCommGroup V'] [InnerProductSpace โ V] [InnerProductSpace โ V'] [Fact (Module.finrank โ V = 2)] [Fact (Module.finrank โ V' = 2)] (o : Orientation โ V (Fin 2)) (x y : V') (f : V โโแตข[โ] V') : ((Orientation.map (Fin 2) f.toLinearEquiv) o).oangle x y = o.oangle (f.symm x) (f.symm y) - Orientation.oangle_map_complex ๐ Mathlib.Geometry.Euclidean.Angle.Oriented.Basic
{V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace โ V] [Fact (Module.finrank โ V = 2)] (o : Orientation โ V (Fin 2)) (f : V โโแตข[โ] โ) (hf : (Orientation.map (Fin 2) f.toLinearEquiv) o = Complex.orientation) (x y : V) : o.oangle x y = โ((starRingEnd โ) (f x) * f y).arg - Orientation.rotation_map ๐ Mathlib.Geometry.Euclidean.Angle.Oriented.Rotation
{V : Type u_1} {V' : Type u_2} [NormedAddCommGroup V] [NormedAddCommGroup V'] [InnerProductSpace โ V] [InnerProductSpace โ V'] [Fact (Module.finrank โ V = 2)] [Fact (Module.finrank โ V' = 2)] (o : Orientation โ V (Fin 2)) (ฮธ : Real.Angle) (f : V โโแตข[โ] V') (x : V') : (((Orientation.map (Fin 2) f.toLinearEquiv) o).rotation ฮธ) x = f ((o.rotation ฮธ) (f.symm x)) - Orientation.rotation_map_complex ๐ Mathlib.Geometry.Euclidean.Angle.Oriented.Rotation
{V : Type u_1} [NormedAddCommGroup V] [InnerProductSpace โ V] [Fact (Module.finrank โ V = 2)] (o : Orientation โ V (Fin 2)) (ฮธ : Real.Angle) (f : V โโแตข[โ] โ) (hf : (Orientation.map (Fin 2) f.toLinearEquiv) o = Complex.orientation) (x : V) : f ((o.rotation ฮธ) x) = โฮธ.toCircle * f x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65