Loogle!
Result
Found 6 declarations mentioning OrthonormalBasis.map.
- OrthonormalBasis.map ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) : OrthonormalBasis ฮน ๐ G - Complex.map_isometryOfOrthonormal ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{F : Type u_5} [NormedAddCommGroup F] [InnerProductSpace โ F] {F' : Type u_6} [NormedAddCommGroup F'] [InnerProductSpace โ F'] (v : OrthonormalBasis (Fin 2) โ F) (f : F โโแตข[โ] F') : Complex.isometryOfOrthonormal (v.map f) = (Complex.isometryOfOrthonormal v).trans f - OrthonormalBasis.toBasis_map ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) : (b.map L).toBasis = b.toBasis.map L.toLinearEquiv - OrthonormalBasis.map_apply ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) (i : ฮน) : (b.map L) i = L (b i) - OrthonormalBasis.map.eq_1 ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) : b.map L = { repr := L.symm.trans b.repr } - OrthonormalBasis.span.eq_1 ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน' : Type u_2} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [DecidableEq E] {v' : ฮน' โ E} (h : Orthonormal ๐ v') (s : Finset ฮน') : OrthonormalBasis.span h s = (OrthonormalBasis.mk โฏ โฏ).map (LinearIsometryEquiv.ofEq (Submodule.span ๐ โ(Finset.image v' s)) (Submodule.span ๐ (Set.range (v' โ Subtype.val))) โฏ).symm
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65