Loogle!
Result
Found 18 declarations mentioning PMF.map.
- PMF.map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) : PMF β - PMF.map_id 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} (p : PMF α) : PMF.map id p = p - PMF.map_const 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (p : PMF α) (b : β) : PMF.map (Function.const α b) p = PMF.pure b - PMF.pure_map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (a : α) : PMF.map f (PMF.pure a) = PMF.pure (f a) - PMF.support_map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) : (PMF.map f p).support = f '' p.support - PMF.monad_map_eq_map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α β : Type u} (f : α → β) (p : PMF α) : f <$> p = PMF.map f p - PMF.bind_pure_comp 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) : p.bind (PMF.pure ∘ f) = PMF.map f p - PMF.map.eq_1 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) : PMF.map f p = p.bind (PMF.pure ∘ f) - PMF.map_comp 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α → β) (p : PMF α) (g : β → γ) : PMF.map g (PMF.map f p) = PMF.map (g ∘ f) p - PMF.bind_map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (f : α → β) (q : β → PMF γ) : (PMF.map f p).bind q = p.bind (q ∘ f) - PMF.map_bind 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} {γ : Type u_3} (p : PMF α) (q : α → PMF β) (f : β → γ) : PMF.map f (p.bind q) = p.bind fun a => PMF.map f (q a) - PMF.toMeasure_map 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (p : PMF α) (hf : Measurable f) : MeasureTheory.Measure.map f p.toMeasure = (PMF.map f p).toMeasure - PMF.mem_support_map_iff 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) (b : β) : b ∈ (PMF.map f p).support ↔ ∃ a ∈ p.support, f a = b - PMF.toOuterMeasure_map_apply 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) (s : Set β) : (PMF.map f p).toOuterMeasure s = p.toOuterMeasure (f ⁻¹' s) - PMF.map_apply 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) (b : β) : (PMF.map f p) b = ∑' (a : α), if b = f a then p a else 0 - PMF.toMeasure_map_apply 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} (f : α → β) (p : PMF α) (s : Set β) {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (hf : Measurable f) (hs : MeasurableSet s) : (PMF.map f p).toMeasure s = p.toMeasure (f ⁻¹' s) - PMF.map_ofFintype 📋 Mathlib.Probability.ProbabilityMassFunction.Constructions
{α : Type u_1} {β : Type u_2} [Fintype α] [Fintype β] (f : α → ENNReal) (h : ∑ a, f a = 1) (g : α → β) : PMF.map g (PMF.ofFintype f h) = PMF.ofFintype (fun b => ∑ a with g a = b, f a) ⋯ - PMF.binomial_one_eq_bernoulli 📋 Mathlib.Probability.ProbabilityMassFunction.Binomial
(p : ENNReal) (h : p ≤ 1) : PMF.binomial p h 1 = PMF.map (fun x => bif x then 1 else 0) (PMF.bernoulli p h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08