Loogle!
Result
Found 12 declarations mentioning Path.map.
- Path.map π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y : X} (Ξ³ : Path x y) {f : X β Y} (h : Continuous f) : Path (f x) (f y) - Path.map_id π Mathlib.Topology.Path
{X : Type u_1} [TopologicalSpace X] {x y : X} (Ξ³ : Path x y) : Ξ³.map β― = Ξ³ - Path.map_symm π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y : X} (Ξ³ : Path x y) {f : X β Y} (h : Continuous f) : (Ξ³.map h).symm = Ξ³.symm.map h - Path.map_trans π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y z : X} (Ξ³ : Path x y) (Ξ³' : Path y z) {f : X β Y} (h : Continuous f) : (Ξ³.trans Ξ³').map h = (Ξ³.map h).trans (Ξ³'.map h) - Path.map_coe π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y : X} (Ξ³ : Path x y) {f : X β Y} (h : Continuous f) : β(Ξ³.map h) = f β βΞ³ - Path.map_map π Mathlib.Topology.Path
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {x y : X} (Ξ³ : Path x y) {Z : Type u_4} [TopologicalSpace Z] {f : X β Y} (hf : Continuous f) {g : Y β Z} (hg : Continuous g) : (Ξ³.map hf).map hg = Ξ³.map β― - Path.add.eq_1 π Mathlib.Topology.Path
{X : Type u_1} [TopologicalSpace X] [Add X] [ContinuousAdd X] {aβ bβ aβ bβ : X} (Ξ³β : Path aβ bβ) (Ξ³β : Path aβ bβ) : Ξ³β.add Ξ³β = (Ξ³β.prod Ξ³β).map β― - Path.mul.eq_1 π Mathlib.Topology.Path
{X : Type u_1} [TopologicalSpace X] [Mul X] [ContinuousMul X] {aβ bβ aβ bβ : X} (Ξ³β : Path aβ bβ) (Ξ³β : Path aβ bβ) : Ξ³β.mul Ξ³β = (Ξ³β.prod Ξ³β).map β― - Path.Homotopic.map π Mathlib.Topology.Homotopy.Path
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {xβ xβ : X} {p q : Path xβ xβ} (h : p.Homotopic q) (f : C(X, Y)) : (p.map β―).Homotopic (q.map β―) - Path.Homotopy.map π Mathlib.Topology.Homotopy.Path
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {xβ xβ : X} {p q : Path xβ xβ} (F : p.Homotopy q) (f : C(X, Y)) : (p.map β―).Homotopy (q.map β―) - Path.Homotopic.map_lift π Mathlib.Topology.Homotopy.Path
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {xβ xβ : X} (Pβ : Path xβ xβ) (f : C(X, Y)) : β¦Pβ.map β―β§ = Path.Homotopic.Quotient.mapFn β¦Pββ§ f - Path.Homotopy.map_apply π Mathlib.Topology.Homotopy.Path
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {xβ xβ : X} {p q : Path xβ xβ} (F : p.Homotopy q) (f : C(X, Y)) (aβ : βunitInterval Γ βunitInterval) : (F.map f) aβ = (βf β βF) aβ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65