Loogle!
Result
Found 24 declarations mentioning PiTensorProduct.map.
- PiTensorProduct.map 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) : (PiTensorProduct R fun i => s i) →ₗ[R] PiTensorProduct R fun i => t i - PiTensorProduct.map_id 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] : (PiTensorProduct.map fun i => LinearMap.id) = LinearMap.id - PiTensorProduct.map_one 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] : (PiTensorProduct.map fun i => 1) = 1 - PiTensorProduct.map_comp 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} {t' : ι → Type u_12} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] [(i : ι) → AddCommMonoid (t' i)] [(i : ι) → Module R (t' i)] (g : (i : ι) → t i →ₗ[R] t' i) (f : (i : ι) → s i →ₗ[R] t i) : (PiTensorProduct.map fun i => g i ∘ₗ f i) = PiTensorProduct.map g ∘ₗ PiTensorProduct.map f - PiTensorProduct.congr.eq_1 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i ≃ₗ[R] t i) : PiTensorProduct.congr f = LinearEquiv.ofLinear (PiTensorProduct.map fun i => ↑(f i)) (PiTensorProduct.map fun i => ↑(f i).symm) ⋯ ⋯ - PiTensorProduct.mapIncl.eq_1 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] (p : (i : ι) → Submodule R (s i)) : PiTensorProduct.mapIncl p = PiTensorProduct.map fun i => (p i).subtype - PiTensorProduct.map_tprod 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (x : (i : ι) → s i) : (PiTensorProduct.map f) ((PiTensorProduct.tprod R) x) = ⨂ₜ[R] (i : ι), (f i) (x i) - PiTensorProduct.map_range_eq_span_tprod 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) : LinearMap.range (PiTensorProduct.map f) = Submodule.span R {t_1 | ∃ m, (⨂ₜ[R] (i : ι), (f i) (m i)) = t_1} - PiTensorProduct.map_mul 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] (f₁ f₂ : (i : ι) → s i →ₗ[R] s i) : (PiTensorProduct.map fun i => f₁ i * f₂ i) = PiTensorProduct.map f₁ * PiTensorProduct.map f₂ - PiTensorProduct.map_pow 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] (f : (i : ι) → s i →ₗ[R] s i) (n : ℕ) : PiTensorProduct.map (f ^ n) = PiTensorProduct.map f ^ n - PiTensorProduct.map_smul 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) [DecidableEq ι] (i : ι) (c : R) (u : s i →ₗ[R] t i) : PiTensorProduct.map (Function.update f i (c • u)) = c • PiTensorProduct.map (Function.update f i u) - PiTensorProduct.map_update_smul 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) [DecidableEq ι] (i : ι) (c : R) (u : s i →ₗ[R] t i) : PiTensorProduct.map (Function.update f i (c • u)) = c • PiTensorProduct.map (Function.update f i u) - PiTensorProduct.map_add 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) [DecidableEq ι] (i : ι) (u v : s i →ₗ[R] t i) : PiTensorProduct.map (Function.update f i (u + v)) = PiTensorProduct.map (Function.update f i u) + PiTensorProduct.map (Function.update f i v) - PiTensorProduct.map_update_add 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) [DecidableEq ι] (i : ι) (u v : s i →ₗ[R] t i) : PiTensorProduct.map (Function.update f i (u + v)) = PiTensorProduct.map (Function.update f i u) + PiTensorProduct.map (Function.update f i v) - PiTensorProduct.mapMultilinear_apply 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} (R : Type u_4) [CommSemiring R] (s : ι → Type u_7) [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] (t : ι → Type u_11) [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) : (PiTensorProduct.mapMultilinear R s t) f = PiTensorProduct.map f - PiTensorProduct.mapMonoidHom_apply 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] (f : (i : ι) → s i →ₗ[R] s i) : PiTensorProduct.mapMonoidHom f = PiTensorProduct.map f - PiTensorProduct.map_comp_reindex_eq 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {ι₂ : Type u_2} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (e : ι ≃ ι₂) : (PiTensorProduct.map fun i => f (e.symm i)) ∘ₗ ↑(PiTensorProduct.reindex R s e) = ↑(PiTensorProduct.reindex R t e) ∘ₗ PiTensorProduct.map f - PiTensorProduct.map_comp_reindex_symm 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {ι₂ : Type u_2} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (e : ι ≃ ι₂) : PiTensorProduct.map f ∘ₗ ↑(PiTensorProduct.reindex R s e).symm = ↑(PiTensorProduct.reindex R t e).symm ∘ₗ PiTensorProduct.map fun i => f (e.symm i) - PiTensorProduct.lift_comp_map 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {E : Type u_9} [AddCommMonoid E] [Module R E] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (h : MultilinearMap R t E) : PiTensorProduct.lift h ∘ₗ PiTensorProduct.map f = PiTensorProduct.lift (h.compLinearMap f) - PiTensorProduct.map_reindex 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {ι₂ : Type u_2} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (e : ι ≃ ι₂) (x : PiTensorProduct R fun i => s i) : (PiTensorProduct.map fun i => f (e.symm i)) ((PiTensorProduct.reindex R s e) x) = (PiTensorProduct.reindex R t e) ((PiTensorProduct.map f) x) - PiTensorProduct.piTensorHomMap_tprod_eq_map 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) : PiTensorProduct.piTensorHomMap ((PiTensorProduct.tprod R) f) = PiTensorProduct.map f - PiTensorProduct.map_reindex_symm 📋 Mathlib.LinearAlgebra.PiTensorProduct
{ι : Type u_1} {ι₂ : Type u_2} {R : Type u_4} [CommSemiring R] {s : ι → Type u_7} [(i : ι) → AddCommMonoid (s i)] [(i : ι) → Module R (s i)] {t : ι → Type u_11} [(i : ι) → AddCommMonoid (t i)] [(i : ι) → Module R (t i)] (f : (i : ι) → s i →ₗ[R] t i) (e : ι ≃ ι₂) (x : PiTensorProduct R fun i => s (e.symm i)) : (PiTensorProduct.map f) ((PiTensorProduct.reindex R s e).symm x) = (PiTensorProduct.reindex R t e).symm ((PiTensorProduct.map fun i => f (e.symm i)) x) - PiTensorProduct.mapL_coe 📋 Mathlib.Analysis.NormedSpace.PiTensorProduct.InjectiveSeminorm
{ι : Type uι} [Fintype ι] {𝕜 : Type u𝕜} [NontriviallyNormedField 𝕜] {E : ι → Type uE} [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] {E' : ι → Type u_1} [(i : ι) → SeminormedAddCommGroup (E' i)] [(i : ι) → NormedSpace 𝕜 (E' i)] (f : (i : ι) → E i →L[𝕜] E' i) : ↑(PiTensorProduct.mapL f) = PiTensorProduct.map fun i => ↑(f i) - PiTensorProduct.mapL_apply 📋 Mathlib.Analysis.NormedSpace.PiTensorProduct.InjectiveSeminorm
{ι : Type uι} [Fintype ι] {𝕜 : Type u𝕜} [NontriviallyNormedField 𝕜] {E : ι → Type uE} [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] {E' : ι → Type u_1} [(i : ι) → SeminormedAddCommGroup (E' i)] [(i : ι) → NormedSpace 𝕜 (E' i)] (f : (i : ι) → E i →L[𝕜] E' i) (x : PiTensorProduct 𝕜 fun i => E i) : (PiTensorProduct.mapL f) x = (PiTensorProduct.map fun i => ↑(f i)) x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65