Loogle!
Result
Found 5960 declarations mentioning Polynomial. Of these, only the first 200 are shown.
- Polynomial π Mathlib.Algebra.Polynomial.Basic
(R : Type u_1) [Semiring R] : Type u_1 - Polynomial.X π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial R - Polynomial.inhabited π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Inhabited (Polynomial R) - Polynomial.instAdd π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Add (Polynomial R) - Polynomial.instMul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Mul (Polynomial R) - Polynomial.instNatCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : NatCast (Polynomial R) - Polynomial.instOne π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : One (Polynomial R) - Polynomial.instZero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Zero (Polynomial R) - Polynomial.semiring π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Semiring (Polynomial R) - Polynomial.coeff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial R β β β R - Polynomial.coeffs π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : Finset R - Polynomial.instNSMul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : SMul β (Polynomial R) - Polynomial.pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Pow (Polynomial R) β - Polynomial.support π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial R β Finset β - Polynomial.commSemiring π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [CommSemiring R] : CommSemiring (Polynomial R) - Polynomial.instDecidableEq π Mathlib.Algebra.Polynomial.Basic
(R : Type u) [Semiring R] [DecidableEq R] : DecidableEq (Polynomial R) - Polynomial.instIntCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] : IntCast (Polynomial R) - Polynomial.instNeg π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] : Neg (Polynomial R) - Polynomial.instSub π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] : Sub (Polynomial R) - Polynomial.nontrivial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [Nontrivial R] : Nontrivial (Polynomial R) - Polynomial.ring π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] : Ring (Polynomial R) - Polynomial.unique π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [Subsingleton R] : Unique (Polynomial R) - Polynomial.erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] (n : β) : Polynomial R β Polynomial R - Polynomial.instZSMul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] : SMul β€ (Polynomial R) - Polynomial.nontrivial_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Nontrivial (Polynomial R) β Nontrivial R - Polynomial.ofFinsupp π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] (toFinsupp : AddMonoidAlgebra R β) : Polynomial R - Polynomial.subsingleton_iff_subsingleton π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Subsingleton (Polynomial R) β Subsingleton R - Polynomial.toFinsupp π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] (self : Polynomial R) : AddMonoidAlgebra R β - Polynomial.commRing π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [CommRing R] : CommRing (Polynomial R) - Polynomial.repr π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [Repr R] [DecidableEq R] : Repr (Polynomial R) - Polynomial.update π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) : Polynomial R - Polynomial.coeff_injective π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Function.Injective Polynomial.coeff - Polynomial.sum π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (f : β β R β S) : S - Polynomial.toFinsupp_injective π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Function.Injective Polynomial.toFinsupp - Polynomial.finite_range_coeff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (f : Polynomial R) : (Set.range f.coeff).Finite - Polynomial.commute_X π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : Commute Polynomial.X p - Polynomial.Nontrivial.of_polynomial_ne π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p q : Polynomial R} (h : p β q) : Nontrivial R - Polynomial.C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : R β+* Polynomial R - Polynomial.eta π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (f : Polynomial R) : { toFinsupp := f.toFinsupp } = f - Polynomial.coeff_update_same π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) : (p.update n a).coeff n = a - Polynomial.forall_eq_iff_forall_eq π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : (β (f g : Polynomial R), f = g) β β (a b : R), a = b - Polynomial.forall_iff_forall_finsupp π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (P : Polynomial R β Prop) : (β (p : Polynomial R), P p) β β (q : AddMonoidAlgebra R β), P { toFinsupp := q } - Polynomial.X_ne_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [Nontrivial R] : Polynomial.X β 0 - Polynomial.instIsDomainOfIsCancelAdd π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [IsCancelAdd R] [IsDomain R] : IsDomain (Polynomial R) - Polynomial.smulZeroClass π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] : SMulZeroClass S (Polynomial R) - Polynomial.coeffs_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.coeffs 0 = β - Polynomial.support_erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : (Polynomial.erase n p).support = p.support.erase n - Polynomial.support_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.support 0 = β - Polynomial.coeff_inj π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p q : Polynomial R} : p.coeff = q.coeff β p = q - Polynomial.erase_ne π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n i : β) (h : i β n) : (Polynomial.erase n p).coeff i = p.coeff i - Polynomial.ext π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p q : Polynomial R} : (β (n : β), p.coeff n = q.coeff n) β p = q - Polynomial.coeffs.eq_1 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : p.coeffs = Finset.image (fun n => p.coeff n) p.support - Polynomial.ext_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p q : Polynomial R} : p = q β β (n : β), p.coeff n = q.coeff n - Polynomial.support_toFinsupp π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : p.toFinsupp.support = p.support - Polynomial.toFinsupp_inj π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a b : Polynomial R} : a.toFinsupp = b.toFinsupp β a = b - Polynomial.coeff_update_ne π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) {n : β} (a : R) {i : β} (h : i β n) : (p.update n a).coeff i = p.coeff i - Polynomial.coeffs_nonempty_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : p.coeffs.Nonempty β p β 0 - Polynomial.support_nonempty π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : p.support.Nonempty β p β 0 - Polynomial.coeff_update π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) : (p.update n a).coeff = Function.update p.coeff n a - Polynomial.exists_iff_exists_finsupp π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (P : Polynomial R β Prop) : (β p, P p) β β q, P { toFinsupp := q } - Polynomial.ofFinsupp_inj π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a b : AddMonoidAlgebra R β} : { toFinsupp := a } = { toFinsupp := b } β a = b - Polynomial.erase_same π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : (Polynomial.erase n p).coeff n = 0 - Polynomial.support_neg π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] {p : Polynomial R} : (-p).support = p.support - Polynomial.ofFinsupp.injEq π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] (toFinsupp toFinsuppβ : AddMonoidAlgebra R β) : ({ toFinsupp := toFinsupp } = { toFinsupp := toFinsuppβ }) = (toFinsupp = toFinsuppβ) - Polynomial.instNoZeroDivisors π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [NoZeroDivisors R] : NoZeroDivisors (Polynomial R) - Polynomial.noZeroDivisors_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : NoZeroDivisors (Polynomial R) β NoZeroDivisors R - Polynomial.update_zero_eq_erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : p.update n 0 = Polynomial.erase n p - Polynomial.coeff_update_apply π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) (i : β) : (p.update n a).coeff i = if i = n then a else p.coeff i - Polynomial.coeff_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : Polynomial.coeff 0 n = 0 - Polynomial.coeffs_empty_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : p.coeffs = β β p = 0 - Polynomial.erase_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : Polynomial.erase n 0 = 0 - Polynomial.support_eq_empty π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : p.support = β β p = 0 - Polynomial.card_support_eq_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : p.support.card = 0 β p = 0 - Polynomial.ofFinsupp_erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : AddMonoidAlgebra R β) (n : β) : { toFinsupp := Finsupp.erase n p } = Polynomial.erase n { toFinsupp := p } - Polynomial.sum_def π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (f : β β R β S) : p.sum f = β n β p.support, f n (p.coeff n) - Polynomial.toFinsuppIso π Mathlib.Algebra.Polynomial.Basic
(R : Type u) [Semiring R] : Polynomial R β+* AddMonoidAlgebra R β - Polynomial.toFinsupp_erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : (Polynomial.erase n p).toFinsupp = Finsupp.erase n p.toFinsupp - Polynomial.sum.eq_1 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (f : β β R β S) : p.sum f = β n β p.support, f n (p.coeff n) - Polynomial.module π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [Semiring S] [Module S R] : Module S (Polynomial R) - Polynomial.coeff_one_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.coeff 1 0 = 1 - Polynomial.update.eq_1 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) : p.update n a = { toFinsupp := Finsupp.update p.toFinsupp n a } - Polynomial.mem_support_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {n : β} [Semiring R] {p : Polynomial R} : n β p.support β p.coeff n β 0 - Polynomial.ofFinsupp_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : { toFinsupp := 1 } = 1 - Polynomial.support_update_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : (p.update n 0).support = p.support.erase n - Polynomial.notMem_support_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {n : β} [Semiring R] {p : Polynomial R} : n β p.support β p.coeff n = 0 - Polynomial.toFinsupp_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.toFinsupp 1 = 1 - Polynomial.mem_coeffs_iff π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} {c : R} : c β p.coeffs β β n β p.support, c = p.coeff n - Polynomial.coeff_mem_coeffs π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} {n : β} (h : p.coeff n β 0) : p.coeff n β p.coeffs - Polynomial.coeffs_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.coeffs 1 β {1} - Polynomial.sum_zero_index π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (f : β β R β S) : Polynomial.sum 0 f = 0 - Polynomial.distribMulAction π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [Monoid S] [DistribMulAction S R] : DistribMulAction S (Polynomial R) - Polynomial.instIsCancelMulZeroOfIsCancelAdd π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [IsCancelAdd R] [IsCancelMulZero R] : IsCancelMulZero (Polynomial R) - Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [IsCancelAdd R] [IsLeftCancelMulZero R] : IsLeftCancelMulZero (Polynomial R) - Polynomial.instIsRightCancelMulZeroOfIsCancelAdd π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [IsCancelAdd R] [IsRightCancelMulZero R] : IsRightCancelMulZero (Polynomial R) - Polynomial.ofMultiset π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [CommRing R] : AddChar (Multiset R) (Polynomial R) - Polynomial.distribSMul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [DistribSMul S R] : DistribSMul S (Polynomial R) - Polynomial.ofFinsupp.sizeOf_spec π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] [SizeOf R] (toFinsupp : AddMonoidAlgebra R β) : sizeOf { toFinsupp := toFinsupp } = 1 + sizeOf toFinsupp - Polynomial.C_injective π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Function.Injective βPolynomial.C - Polynomial.coeff_erase π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n i : β) : (Polynomial.erase n p).coeff i = if i = n then 0 else p.coeff i - Polynomial.coeff_ofNat_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : β) [a.AtLeastTwo] : (OfNat.ofNat a).coeff 0 = OfNat.ofNat a - Polynomial.commute_X_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) : Commute (Polynomial.X ^ n) p - Polynomial.erase_def π Mathlib.Algebra.Polynomial.Basic
{R : Type u_1} [Semiring R] (n : β) (xβ : Polynomial R) : Polynomial.erase n xβ = match xβ with | { toFinsupp := p } => { toFinsupp := Finsupp.erase n p } - Polynomial.ofFinsupp_natCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : { toFinsupp := βn } = βn - Polynomial.toFinsupp_apply π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (f : Polynomial R) (i : β) : f.toFinsupp i = f.coeff i - Polynomial.ofFinsupp_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : { toFinsupp := 0 } = 0 - Polynomial.toFinsupp_natCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : (βn).toFinsupp = βn - Polynomial.coeff_neg π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (p : Polynomial R) (n : β) : (-p).coeff n = -p.coeff n - Polynomial.support_update_ne_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) {a : R} (ha : a β 0) : (p.update n a).support = insert n p.support - Polynomial.toFinsupp_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.toFinsupp 0 = 0 - Polynomial.faithfulSMul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] [FaithfulSMul S R] : FaithfulSMul S (Polynomial R) - Polynomial.support_add π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p q : Polynomial R} : (p + q).support β p.support βͺ q.support - Polynomial.monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : R ββ[R] Polynomial R - Polynomial.toFinsupp_eq_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : Polynomial R} : a.toFinsupp = 1 β a = 1 - Polynomial.X_mul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} : Polynomial.X * p = p * Polynomial.X - Polynomial.ofFinsupp_eq_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : AddMonoidAlgebra R β} : { toFinsupp := a } = 1 β a = 1 - Polynomial.ofFinsupp_intCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (z : β€) : { toFinsupp := βz } = βz - IsSMulRegular.polynomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] {a : S} (ha : IsSMulRegular R a) : IsSMulRegular (Polynomial R) a - Polynomial.X_ne_C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] [Nontrivial R] (a : R) : Polynomial.X β Polynomial.C a - Polynomial.coeff_natCast_ite π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {m n : β} [Semiring R] : (βm).coeff n = β(if n = 0 then m else 0) - Polynomial.eq_zero_of_eq_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (h : 0 = 1) (p : Polynomial R) : p = 0 - Polynomial.toFinsupp_intCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (z : β€) : (βz).toFinsupp = βz - Polynomial.coeff_ofNat_succ π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a n : β) [h : a.AtLeastTwo] : (OfNat.ofNat a).coeff (n + 1) = 0 - Polynomial.coeff_C_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} [Semiring R] : (Polynomial.C a).coeff 0 = a - Polynomial.natCast_mul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (p : Polynomial R) : βn * p = n β’ p - Polynomial.ofFinsupp_sum π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {ΞΉ : Type u_1} (s : Finset ΞΉ) (f : ΞΉ β AddMonoidAlgebra R β) : { toFinsupp := β i β s, f i } = β i β s, { toFinsupp := f i } - Polynomial.toFinsupp_eq_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : Polynomial R} : a.toFinsupp = 0 β a = 0 - Polynomial.toFinsupp_sum π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {ΞΉ : Type u_1} (s : Finset ΞΉ) (f : ΞΉ β Polynomial R) : (β i β s, f i).toFinsupp = β i β s, (f i).toFinsupp - Polynomial.ofFinsupp_eq_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : AddMonoidAlgebra R β} : { toFinsupp := a } = 0 β a = 0 - Polynomial.toFinsupp_C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : R) : (Polynomial.C a).toFinsupp = AddMonoidAlgebra.single 0 a - Polynomial.ofFinsupp_ofNat π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) [n.AtLeastTwo] : { toFinsupp := OfNat.ofNat n } = OfNat.ofNat n - Polynomial.support_C_subset π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : R) : (Polynomial.C a).support β {0} - Polynomial.toFinsupp_X_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : (Polynomial.X ^ n).toFinsupp = AddMonoidAlgebra.single n 1 - Polynomial.toFinsupp_ofNat π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) [n.AtLeastTwo] : (OfNat.ofNat n).toFinsupp = OfNat.ofNat n - Polynomial.instNoZeroSMulDivisors π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [Zero S] [SMulZeroClass S R] [NoZeroSMulDivisors S R] : NoZeroSMulDivisors S (Polynomial R) - Polynomial.C_eq_natCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : Polynomial.C βn = βn - Polynomial.coeff_one π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {n : β} : Polynomial.coeff 1 n = if n = 0 then 1 else 0 - Polynomial.toFinsuppIsoLinear π Mathlib.Algebra.Polynomial.Basic
(R : Type u) [Semiring R] : Polynomial R ββ[R] AddMonoidAlgebra R β - Polynomial.toFinsupp_mul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a b : Polynomial R) : (a * b).toFinsupp = a.toFinsupp * b.toFinsupp - Polynomial.ofFinsupp_mul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a b : AddMonoidAlgebra R β) : { toFinsupp := a * b } = { toFinsupp := a } * { toFinsupp := b } - Polynomial.sum_add π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (f g : β β R β S) : (p.sum fun n x => f n x + g n x) = p.sum f + p.sum g - Polynomial.C_0 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.C 0 = 0 - Polynomial.C_1 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.C 1 = 1 - Polynomial.coeff_C_ne_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} {n : β} [Semiring R] (h : n β 0) : (Polynomial.C a).coeff n = 0 - Polynomial.ofFinsupp_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : AddMonoidAlgebra R β) (n : β) : { toFinsupp := a ^ n } = { toFinsupp := a } ^ n - Polynomial.toFinsupp_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : Polynomial R) (n : β) : (a ^ n).toFinsupp = a.toFinsupp ^ n - Polynomial.coeff_C_succ π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {r : R} {n : β} : (Polynomial.C r).coeff (n + 1) = 0 - Polynomial.toFinsupp_add π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a b : Polynomial R) : (a + b).toFinsupp = a.toFinsupp + b.toFinsupp - Polynomial.C_eq_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} [Semiring R] : Polynomial.C a = 0 β a = 0 - Polynomial.C_ne_zero π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} [Semiring R] : Polynomial.C a β 0 β a β 0 - Polynomial.coeff_sub π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (p q : Polynomial R) (n : β) : (p - q).coeff n = p.coeff n - q.coeff n - Polynomial.ofFinsupp_add π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a b : AddMonoidAlgebra R β} : { toFinsupp := a + b } = { toFinsupp := a } + { toFinsupp := b } - Polynomial.support_C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : R} (h : a β 0) : (Polynomial.C a).support = {0} - Polynomial.sum_eq_of_subset π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] {p : Polynomial R} (f : β β R β S) (hf : β (i : β), f i 0 = 0) {s : Finset β} (hs : p.support β s) : p.sum f = β n β s, f n (p.coeff n) - Polynomial.support_update π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) (n : β) (a : R) [Decidable (a = 0)] : (p.update n a).support = if a = 0 then p.support.erase n else insert n p.support - Polynomial.C_ofNat π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) [n.AtLeastTwo] : Polynomial.C (OfNat.ofNat n) = OfNat.ofNat n - Polynomial.support_X_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (H : Β¬1 = 0) (n : β) : (Polynomial.X ^ n).support = {n} - Polynomial.ofFinsupp_nsmul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : β) (b : AddMonoidAlgebra R β) : { toFinsupp := a β’ b } = a β’ { toFinsupp := b } - Polynomial.toFinsupp_nsmul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : β) (b : Polynomial R) : (a β’ b).toFinsupp = a β’ b.toFinsupp - Polynomial.ofFinsupp_neg π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] {a : AddMonoidAlgebra R β} : { toFinsupp := -a } = -{ toFinsupp := a } - Polynomial.toFinsupp_C_mul_X π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : R) : (Polynomial.C a * Polynomial.X).toFinsupp = AddMonoidAlgebra.single 1 a - Polynomial.toFinsupp_neg π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (a : Polynomial R) : (-a).toFinsupp = -a.toFinsupp - Polynomial.coeff_C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} {n : β} [Semiring R] : (Polynomial.C a).coeff n = if n = 0 then a else 0 - Polynomial.support_C_mul_X' π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (c : R) : (Polynomial.C c * Polynomial.X).support β {1} - Polynomial.sum_add' π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (f g : β β R β S) : p.sum (f + g) = p.sum f + p.sum g - Polynomial.C_eq_intCast π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (n : β€) : Polynomial.C βn = βn - Polynomial.smulCommClass π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {Sβ : Type u_1} {Sβ : Type u_2} [SMulZeroClass Sβ R] [SMulZeroClass Sβ R] [SMulCommClass Sβ Sβ R] : SMulCommClass Sβ Sβ (Polynomial R) - Polynomial.isCentralScalar π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] [SMulZeroClass Sα΅α΅α΅ R] [IsCentralScalar S R] : IsCentralScalar S (Polynomial R) - Polynomial.C_inj π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a b : R} [Semiring R] : Polynomial.C a = Polynomial.C b β a = b - Polynomial.isScalarTower π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {Sβ : Type u_1} {Sβ : Type u_2} [SMul Sβ Sβ] [SMulZeroClass Sβ R] [SMulZeroClass Sβ R] [IsScalarTower Sβ Sβ R] : IsScalarTower Sβ Sβ (Polynomial R) - Polynomial.support_C_mul_X π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {c : R} (h : c β 0) : (Polynomial.C c * Polynomial.X).support = {1} - Polynomial.smul_sum π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} {T : Type u_2} [AddCommMonoid S] [DistribSMul T S] (p : Polynomial R) (b : T) (f : β β R β S) : b β’ p.sum f = p.sum fun n a => b β’ f n a - Polynomial.sum_C_index π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {a : R} {Ξ² : Type u_1} [AddCommMonoid Ξ²] {f : β β R β Ξ²} (h : f 0 0 = 0) : (Polynomial.C a).sum f = f 0 a - Polynomial.ofFinsupp_zsmul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (a : β€) (b : AddMonoidAlgebra R β) : { toFinsupp := a β’ b } = a β’ { toFinsupp := b } - Polynomial.toFinsupp_zsmul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (a : β€) (b : Polynomial R) : (a β’ b).toFinsupp = a β’ b.toFinsupp - Polynomial.toFinsupp_C_mul_X_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (a : R) (n : β) : (Polynomial.C a * Polynomial.X ^ n).toFinsupp = AddMonoidAlgebra.single n a - Polynomial.support_C_mul_X_pow' π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (c : R) : (Polynomial.C c * Polynomial.X ^ n).support β {n} - Polynomial.X_pow_mul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {p : Polynomial R} {n : β} : Polynomial.X ^ n * p = p * Polynomial.X ^ n - Polynomial.monomial_injective π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : Function.Injective β(Polynomial.monomial n) - Polynomial.ofFinsupp_smul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] (a : S) (b : AddMonoidAlgebra R β) : { toFinsupp := a β’ b } = a β’ { toFinsupp := b } - Polynomial.toFinsupp_smul π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [SMulZeroClass S R] (a : S) (b : Polynomial R) : (a β’ b).toFinsupp = a β’ b.toFinsupp - Polynomial.coeff_monomial_same π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (c : R) : ((Polynomial.monomial n) c).coeff n = c - Polynomial.ofFinsupp_single π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (r : R) : { toFinsupp := AddMonoidAlgebra.single n r } = (Polynomial.monomial n) r - Polynomial.toFinsupp_sub π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] (a b : Polynomial R) : (a - b).toFinsupp = a.toFinsupp - b.toFinsupp - Polynomial.ofFinsupp_sub π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Ring R] {a b : AddMonoidAlgebra R β} : { toFinsupp := a - b } = { toFinsupp := a } - { toFinsupp := b } - Polynomial.sum_C_mul_X_pow_eq π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : (p.sum fun n a => Polynomial.C a * Polynomial.X ^ n) = p - Polynomial.support_C_mul_X_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) {c : R} (h : c β 0) : (Polynomial.C c * Polynomial.X ^ n).support = {n} - Polynomial.toFinsupp_monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (r : R) : ((Polynomial.monomial n) r).toFinsupp = AddMonoidAlgebra.single n r - Polynomial.support_monomial' π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) (a : R) : ((Polynomial.monomial n) a).support β {n} - Polynomial.X_mul_C π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (r : R) : Polynomial.X * Polynomial.C r = Polynomial.C r * Polynomial.X - Polynomial.sum_smul_index π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {S : Type u_1} [AddCommMonoid S] (p : Polynomial R) (b : R) (f : β β R β S) (hf : β (i : β), f i 0 = 0) : (b β’ p).sum f = p.sum fun n a => f n (b * a) - Polynomial.erase_monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {n : β} {a : R} : Polynomial.erase n ((Polynomial.monomial n) a) = 0 - Polynomial.monomial_one_one_eq_X π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : (Polynomial.monomial 1) 1 = Polynomial.X - Polynomial.X.eq_1 π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] : Polynomial.X = (Polynomial.monomial 1) 1 - Polynomial.C_pow π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} {n : β} [Semiring R] : Polynomial.C (a ^ n) = Polynomial.C a ^ n - Polynomial.coeff_monomial_of_ne π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] {m n : β} (c : R) (h : m β n) : ((Polynomial.monomial n) c).coeff m = 0 - Polynomial.monomial_zero_right π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) : (Polynomial.monomial n) 0 = 0 - Polynomial.coeffs_monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) {c : R} (hc : c β 0) : ((Polynomial.monomial n) c).coeffs = {c} - Polynomial.sum_monomial_eq π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (p : Polynomial R) : (p.sum fun n a => (Polynomial.monomial n) a) = p - Polynomial.support_monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} [Semiring R] (n : β) {a : R} (H : a β 0) : ((Polynomial.monomial n) a).support = {n} - Polynomial.coeff_monomial π Mathlib.Algebra.Polynomial.Basic
{R : Type u} {a : R} {m n : β} [Semiring R] : ((Polynomial.monomial n) a).coeff m = if n = m then a else 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 76f94b4