Loogle!
Result
Found 6 declarations mentioning Polynomial, RatFunc, and Inv.inv. Of these, 6 match your pattern(s).
- RatFunc.inv_def 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u_1} [CommRing K] [IsDomain K] (x✝ : RatFunc K) : x✝.inv = match x✝ with | { toFractionRing := p } => { toFractionRing := p⁻¹ } - RatFunc.ofFractionRing_inv 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] [IsDomain K] (p : FractionRing (Polynomial K)) : { toFractionRing := p⁻¹ } = { toFractionRing := p }⁻¹ - RatFunc.numDenom.eq_1 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [Field K] (x : RatFunc K) : x.numDenom = x.liftOn' (fun p q => if q = 0 then (0, 1) else have r := gcd p q; (Polynomial.C (q / r).leadingCoeff⁻¹ * (p / r), Polynomial.C (q / r).leadingCoeff⁻¹ * (q / r))) ⋯ - RatFunc.num_div 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [Field K] (p q : Polynomial K) : ((algebraMap (Polynomial K) (RatFunc K)) p / (algebraMap (Polynomial K) (RatFunc K)) q).num = Polynomial.C (q / gcd p q).leadingCoeff⁻¹ * (p / gcd p q) - RatFunc.denom_div 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [Field K] (p : Polynomial K) {q : Polynomial K} (hq : q ≠ 0) : ((algebraMap (Polynomial K) (RatFunc K)) p / (algebraMap (Polynomial K) (RatFunc K)) q).denom = Polynomial.C (q / gcd p q).leadingCoeff⁻¹ * (q / gcd p q) - RatFunc.numDenom_div 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [Field K] (p : Polynomial K) {q : Polynomial K} (hq : q ≠ 0) : ((algebraMap (Polynomial K) (RatFunc K)) p / (algebraMap (Polynomial K) (RatFunc K)) q).numDenom = (Polynomial.C (q / gcd p q).leadingCoeff⁻¹ * (p / gcd p q), Polynomial.C (q / gcd p q).leadingCoeff⁻¹ * (q / gcd p q))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 83a7f42