Loogle!
Result
Found 8 declarations mentioning PolynomialModule.map.
- PolynomialModule.map 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (R' : Type u_4) {M' : Type u_5} [CommRing R'] [AddCommGroup M'] [Module R' M'] [Module R M'] (f : M →ₗ[R] M') : PolynomialModule R M →ₗ[R] PolynomialModule R' M' - PolynomialModule.map_single 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (R' : Type u_4) {M' : Type u_5} [CommRing R'] [AddCommGroup M'] [Module R' M'] [Module R M'] (f : M →ₗ[R] M') (i : ℕ) (m : M) : (PolynomialModule.map R' f) ((PolynomialModule.single R i) m) = (PolynomialModule.single R' i) (f m) - PolynomialModule.eval_map' 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (f : M →ₗ[R] M) (q : PolynomialModule R M) (r : R) : (PolynomialModule.eval r) ((PolynomialModule.map R f) q) = f ((PolynomialModule.eval r) q) - PolynomialModule.eval_map 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (R' : Type u_4) {M' : Type u_5} [CommRing R'] [AddCommGroup M'] [Module R' M'] [Module R M'] [Algebra R R'] [IsScalarTower R R' M'] (f : M →ₗ[R] M') (q : PolynomialModule R M) (r : R) : (PolynomialModule.eval ((algebraMap R R') r)) ((PolynomialModule.map R' f) q) = f ((PolynomialModule.eval r) q) - PolynomialModule.map_smul 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (R' : Type u_4) {M' : Type u_5} [CommRing R'] [AddCommGroup M'] [Module R' M'] [Module R M'] [Algebra R R'] [IsScalarTower R R' M'] (f : M →ₗ[R] M') (p : Polynomial R) (q : PolynomialModule R M) : (PolynomialModule.map R' f) (p • q) = Polynomial.map (algebraMap R R') p • (PolynomialModule.map R' f) q - PolynomialModule.comp_apply 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (p : Polynomial R) (a✝ : PolynomialModule R M) : (PolynomialModule.comp p) a✝ = (PolynomialModule.eval p) ((PolynomialModule.map (Polynomial R) (PolynomialModule.lsingle R 0)) a✝) - PolynomialModule.aeval_equivPolynomial 📋 Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} [CommRing R] {S : Type u_6} [CommRing S] [Algebra S R] (f : PolynomialModule S S) (x : R) : (Polynomial.aeval x) (PolynomialModule.equivPolynomial f) = (PolynomialModule.eval x) ((PolynomialModule.map R (Algebra.linearMap S R)) f) - Derivation.apply_aeval_eq' 📋 Mathlib.RingTheory.Derivation.MapCoeffs
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommRing R] [CommRing A] [Algebra R A] [AddCommGroup M] [Module A M] [Module R M] (d : Derivation R A M) {B : Type u_4} {M' : Type u_5} [CommRing B] [Algebra R B] [Algebra A B] [AddCommGroup M'] [Module B M'] [Module R M'] [Module A M'] (d' : Derivation R B M') (f : M →ₗ[A] M') (h : ∀ (a : A), f (d a) = d' ((algebraMap A B) a)) (x : B) (p : Polynomial A) : d' ((Polynomial.aeval x) p) = (PolynomialModule.eval x) ((PolynomialModule.map B f) (d.mapCoeffs p)) + (Polynomial.aeval x) (Polynomial.derivative p) • d' x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65