Loogle!
Result
Found 10 declarations mentioning PowerBasis.map.
- PowerBasis.map π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S ββ[R] S') : PowerBasis R S' - PowerBasis.map_dim π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S ββ[R] S') : (pb.map e).dim = pb.dim - PowerBasis.minpolyGen_map π Mathlib.RingTheory.PowerBasis
{S : Type u_2} [Ring S] {A : Type u_4} [CommRing A] {S' : Type u_7} [CommRing S'] [Algebra A S] [Algebra A S'] (pb : PowerBasis A S) (e : S ββ[A] S') : (pb.map e).minpolyGen = pb.minpolyGen - PowerBasis.map_gen π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S ββ[R] S') : (pb.map e).gen = e pb.gen - PowerBasis.equivOfMinpoly_map π Mathlib.RingTheory.PowerBasis
{S : Type u_2} [Ring S] {A : Type u_4} [CommRing A] {S' : Type u_7} [CommRing S'] [Algebra A S] [Algebra A S'] (pb : PowerBasis A S) (e : S ββ[A] S') (h : minpoly A pb.gen = minpoly A (pb.map e).gen) : pb.equivOfMinpoly (pb.map e) h = e - PowerBasis.map_basis π Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S ββ[R] S') : (pb.map e).basis = pb.basis.map e.toLinearEquiv - PowerBasis.equivOfRoot_map π Mathlib.RingTheory.PowerBasis
{S : Type u_2} [Ring S] {A : Type u_4} [CommRing A] {S' : Type u_7} [CommRing S'] [Algebra A S] [Algebra A S'] (pb : PowerBasis A S) (e : S ββ[A] S') (hβ : (Polynomial.aeval pb.gen) (minpoly A (pb.map e).gen) = 0) (hβ : (Polynomial.aeval (pb.map e).gen) (minpoly A pb.gen) = 0) : pb.equivOfRoot (pb.map e) hβ hβ = e - Algebra.adjoin.powerBasis'.eq_1 π Mathlib.FieldTheory.Minpoly.IsIntegrallyClosed
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) : Algebra.adjoin.powerBasis' hx = (AdjoinRoot.powerBasis' β―).map (minpoly.equivAdjoin hx) - PowerBasis.ofGenMemAdjoin'.eq_1 π Mathlib.FieldTheory.Minpoly.IsIntegrallyClosed
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (B : PowerBasis R S) (hint : IsIntegral R x) (hx : B.gen β Algebra.adjoin R {x}) : B.ofGenMemAdjoin' hint hx = (Algebra.adjoin.powerBasis' hint).map (((Algebra.adjoin R {x}).equivOfEq β€ β―).trans Subalgebra.topEquiv) - IsPrimitiveRoot.integralPowerBasis.eq_1 π Mathlib.NumberTheory.Cyclotomic.Rat
{p : β+} {k : β} {K : Type u} [Field K] {ΞΆ : K} [hp : Fact (Nat.Prime βp)] [CharZero K] [IsCyclotomicExtension {p ^ k} β K] (hΞΆ : IsPrimitiveRoot ΞΆ β(p ^ k)) : hΞΆ.integralPowerBasis = (Algebra.adjoin.powerBasis' β―).map hΞΆ.adjoinEquivRingOfIntegers
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65