Loogle!
Result
Found 22 declarations mentioning PowerSeries.map.
- PowerSeries.map š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R ā+* S) : PowerSeries R ā+* PowerSeries S - PowerSeries.map_id š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] : ā(PowerSeries.map (RingHom.id R)) = id - PowerSeries.map_X š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R ā+* S) : (PowerSeries.map f) PowerSeries.X = PowerSeries.X - PowerSeries.map_injective š Mathlib.RingTheory.PowerSeries.Basic
{S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : S ā+* T) (hf : Function.Injective āf) : Function.Injective ā(PowerSeries.map f) - PowerSeries.map_surjective š Mathlib.RingTheory.PowerSeries.Basic
{S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : S ā+* T) (hf : Function.Surjective āf) : Function.Surjective ā(PowerSeries.map f) - PowerSeries.map_comp š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] {S : Type u_2} {T : Type u_3} [Semiring S] [Semiring T] (f : R ā+* S) (g : S ā+* T) : PowerSeries.map (g.comp f) = (PowerSeries.map g).comp (PowerSeries.map f) - Polynomial.polynomial_map_coe š Mathlib.RingTheory.PowerSeries.Basic
{U : Type u_2} {V : Type u_3} [CommSemiring U] [CommSemiring V] {Ļ : U ā+* V} {f : Polynomial U} : ā(Polynomial.map Ļ f) = (PowerSeries.map Ļ) āf - PowerSeries.map_eq_zero š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_2} {S : Type u_3} [DivisionSemiring R] [Semiring S] [Nontrivial S] (Ļ : PowerSeries R) (f : R ā+* S) : (PowerSeries.map f) Ļ = 0 ā Ļ = 0 - PowerSeries.algebraMap_apply'' š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} (A : Type u_2) [CommSemiring R] [CommSemiring A] [Algebra R A] (f : PowerSeries R) : (algebraMap (PowerSeries R) (PowerSeries A)) f = (PowerSeries.map (algebraMap R A)) f - PowerSeries.map_C š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R ā+* S) (r : R) : (PowerSeries.map f) ((PowerSeries.C R) r) = (PowerSeries.C S) (f r) - Polynomial.coeToPowerSeries.algHom_apply š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [CommSemiring R] (Ļ : Polynomial R) (A : Type u_2) [Semiring A] [Algebra R A] : (Polynomial.coeToPowerSeries.algHom A) Ļ = (PowerSeries.map (algebraMap R A)) āĻ - PowerSeries.algebraMap_apply' š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} (A : Type u_2) [CommSemiring R] [CommSemiring A] [Algebra R A] (p : Polynomial R) : (algebraMap (Polynomial R) (PowerSeries A)) p = (PowerSeries.map (algebraMap R A)) āp - PowerSeries.mapAlgHom_apply š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] (Ļ : A āā[R] B) (f : PowerSeries A) : (PowerSeries.mapAlgHom Ļ) f = (PowerSeries.map āĻ) f - PowerSeries.coeff_map š Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] {S : Type u_2} [Semiring S] (f : R ā+* S) (n : ā) (Ļ : PowerSeries R) : (PowerSeries.coeff S n) ((PowerSeries.map f) Ļ) = f ((PowerSeries.coeff R n) Ļ) - PowerSeries.map.isLocalHom š Mathlib.RingTheory.PowerSeries.Inverse
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R ā+* S) [IsLocalHom f] : IsLocalHom (PowerSeries.map f) - PowerSeries.map_cos š Mathlib.RingTheory.PowerSeries.WellKnown
{A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra ā A] [Algebra ā A'] (f : A ā+* A') : (PowerSeries.map f) (PowerSeries.cos A) = PowerSeries.cos A' - PowerSeries.map_exp š Mathlib.RingTheory.PowerSeries.WellKnown
{A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra ā A] [Algebra ā A'] (f : A ā+* A') : (PowerSeries.map f) (PowerSeries.exp A) = PowerSeries.exp A' - PowerSeries.map_sin š Mathlib.RingTheory.PowerSeries.WellKnown
{A : Type u_1} {A' : Type u_2} [Ring A] [Ring A'] [Algebra ā A] [Algebra ā A'] (f : A ā+* A') : (PowerSeries.map f) (PowerSeries.sin A) = PowerSeries.sin A' - PowerSeries.map_invUnitsSub š Mathlib.RingTheory.PowerSeries.WellKnown
{R : Type u_1} {S : Type u_2} [Ring R] [Ring S] (f : R ā+* S) (u : RĖ£) : (PowerSeries.map f) (PowerSeries.invUnitsSub u) = PowerSeries.invUnitsSub ((Units.map āf) u) - PowerSeries.trunc_map š Mathlib.RingTheory.PowerSeries.Trunc
{R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R ā+* S) (p : PowerSeries R) (n : ā) : PowerSeries.trunc n ((PowerSeries.map f) p) = Polynomial.map f (PowerSeries.trunc n p) - IsDistinguishedAt.degree_eq_order_map š Mathlib.RingTheory.Polynomial.Eisenstein.Distinguished
{R : Type u_1} [CommRing R] {I : Ideal R} (f h : PowerSeries R) {g : Polynomial R} (distinguish : g.IsDistinguishedAt I) (nmem : (PowerSeries.constantCoeff R) h ā I) (eq : f = āg * h) : g.degree = ((PowerSeries.map (Ideal.Quotient.mk I)) f).order - Polynomial.IsDistinguishedAt.degree_eq_order_map š Mathlib.RingTheory.Polynomial.Eisenstein.Distinguished
{R : Type u_1} [CommRing R] {I : Ideal R} (f h : PowerSeries R) {g : Polynomial R} (distinguish : g.IsDistinguishedAt I) (nmem : (PowerSeries.constantCoeff R) h ā I) (eq : f = āg * h) : g.degree = ((PowerSeries.map (Ideal.Quotient.mk I)) f).order
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65