Loogle!
Result
Found 6166 declarations mentioning Prefunctor.map. Of these, only the first 200 are shown.
- Prefunctor.id_map š Mathlib.Combinatorics.Quiver.Prefunctor
(V : Type u_1) [Quiver V] {Xā Yā : V} (f : Xā ā¶ Yā) : (šq V).map f = f - Prefunctor.map š Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type uā} [Quiver V] {W : Type uā} [Quiver W] (self : V ℤq W) {X Y : V} : (X ā¶ Y) ā (self.obj X ā¶ self.obj Y) - Prefunctor.congr_map š Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ℤq V) {X Y : U} {f g : X ā¶ Y} (h : f = g) : F.map f = F.map g - Prefunctor.mk_map š Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] {obj : V ā W} {map : {X Y : V} ā (X ā¶ Y) ā (obj X ā¶ obj Y)} {X Y : V} {f : X ā¶ Y} : { obj := obj, map := map }.map f = map f - Prefunctor.comp_map š Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} [Quiver U] {V : Type u_2} [Quiver V] {W : Type u_3} [Quiver W] (F : U ℤq V) (G : V ℤq W) {Xā Yā : U} (f : Xā ā¶ Yā) : (F āq G).map f = G.map (F.map f) - Prefunctor.congr_hom š Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] {F G : U ℤq V} (e : F = G) {X Y : U} (f : X ā¶ Y) : Quiver.homOfEq (F.map f) ⯠⯠= G.map f - Prefunctor.homOfEq_map š Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ℤq V) {X Y : U} (f : X ā¶ Y) {X' Y' : U} (hX : X = X') (hY : Y = Y') : F.map (Quiver.homOfEq f hX hY) = Quiver.homOfEq (F.map f) ⯠⯠- Prefunctor.ext' š Mathlib.Combinatorics.Quiver.Prefunctor
{V W : Type u} [Quiver V] [Quiver W] {F G : V ℤq W} (h_obj : ā (X : V), F.obj X = G.obj X) (h_map : ā (X Y : V) (f : X ā¶ Y), F.map f = Quiver.homOfEq (G.map f) ⯠āÆ) : F = G - Prefunctor.ext š Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type u} [Quiver V] {W : Type uā} [Quiver W] {F G : V ℤq W} (h_obj : ā (X : V), F.obj X = G.obj X) (h_map : ā (X Y : V) (f : X ā¶ Y), F.map f = Eq.recOn ⯠(Eq.recOn ⯠(G.map f))) : F = G - CategoryTheory.Functor.id_map š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (f : X ā¶ Y) : (CategoryTheory.Functor.id C).map f = f - CategoryTheory.Functor.map_id š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (self : CategoryTheory.Functor C D) (X : C) : self.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (self.obj X) - CategoryTheory.Functor.comp_map š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C D) (G : CategoryTheory.Functor D E) {X Y : C} (f : X ā¶ Y) : (F.comp G).map f = G.map (F.map f) - CategoryTheory.Functor.map_comp š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (self : CategoryTheory.Functor C D) {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z) : self.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) - CategoryTheory.Functor.map_dite š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} {P : Prop} [Decidable P] (f : P ā (X ā¶ Y)) (g : ¬P ā (X ā¶ Y)) : F.map (if h : P then f h else g h) = if h : P then F.map (f h) else F.map (g h) - CategoryTheory.Functor.mk š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (toPrefunctor : C ℤq D) (map_id : ā (X : C), toPrefunctor.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (toPrefunctor.obj X) := by cat_disch) (map_comp : ā {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z), toPrefunctor.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (toPrefunctor.map f) (toPrefunctor.map g) := by cat_disch) : CategoryTheory.Functor C D - CategoryTheory.Functor.map_comp_assoc š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{u_1, uā} C] {D : Type uā} [CategoryTheory.Category.{u_2, uā} D] (F : CategoryTheory.Functor C D) {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z) {W : D} (h : F.obj Z ā¶ W) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.CategoryStruct.comp f g)) h = CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.comp (F.map g) h) - CategoryTheory.Functor.mk.sizeOf_spec š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] [SizeOf C] [SizeOf D] (toPrefunctor : C ℤq D) (map_id : ā (X : C), toPrefunctor.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (toPrefunctor.obj X) := by cat_disch) (map_comp : ā {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z), toPrefunctor.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (toPrefunctor.map f) (toPrefunctor.map g) := by cat_disch) : sizeOf { toPrefunctor := toPrefunctor, map_id := map_id, map_comp := map_comp } = 1 + sizeOf toPrefunctor - CategoryTheory.Functor.mk.injEq š Mathlib.CategoryTheory.Functor.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (toPrefunctor : C ℤq D) (map_id : ā (X : C), toPrefunctor.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (toPrefunctor.obj X) := by cat_disch) (map_comp : ā {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z), toPrefunctor.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (toPrefunctor.map f) (toPrefunctor.map g) := by cat_disch) (toPrefunctorā : C ℤq D) (map_idā : ā (X : C), toPrefunctorā.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (toPrefunctorā.obj X) := by cat_disch) (map_compā : ā {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z), toPrefunctorā.map (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (toPrefunctorā.map f) (toPrefunctorā.map g) := by cat_disch) : ({ toPrefunctor := toPrefunctor, map_id := map_id, map_comp := map_comp } = { toPrefunctor := toPrefunctorā, map_id := map_idā, map_comp := map_compā }) = (toPrefunctor = toPrefunctorā) - CategoryTheory.NatTrans.naturality š Mathlib.CategoryTheory.NatTrans
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (self : CategoryTheory.NatTrans F G) ā¦X Y : C⦠(f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (F.map f) (self.app Y) = CategoryTheory.CategoryStruct.comp (self.app X) (G.map f) - CategoryTheory.NatTrans.mk š Mathlib.CategoryTheory.NatTrans
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app : (X : C) ā F.obj X ā¶ G.obj X) (naturality : ā ā¦X Y : C⦠(f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y) = CategoryTheory.CategoryStruct.comp (app X) (G.map f) := by cat_disch) : CategoryTheory.NatTrans F G - CategoryTheory.NatTrans.naturality_assoc š Mathlib.CategoryTheory.NatTrans
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (self : CategoryTheory.NatTrans F G) ā¦X Y : C⦠(f : X ā¶ Y) {Z : D} (h : G.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.comp (self.app Y) h) = CategoryTheory.CategoryStruct.comp (self.app X) (CategoryTheory.CategoryStruct.comp (G.map f) h) - CategoryTheory.NatTrans.mk.sizeOf_spec š Mathlib.CategoryTheory.NatTrans
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} [SizeOf C] [SizeOf D] (app : (X : C) ā F.obj X ā¶ G.obj X) (naturality : ā ā¦X Y : C⦠(f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y) = CategoryTheory.CategoryStruct.comp (app X) (G.map f) := by cat_disch) : sizeOf { app := app, naturality := naturality } = 1 - CategoryTheory.NatTrans.mk.injEq š Mathlib.CategoryTheory.NatTrans
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app : (X : C) ā F.obj X ā¶ G.obj X) (naturality : ā ā¦X Y : C⦠(f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y) = CategoryTheory.CategoryStruct.comp (app X) (G.map f) := by cat_disch) (appā : (X : C) ā F.obj X ā¶ G.obj X) (naturalityā : ā ā¦X Y : C⦠(f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (appā Y) = CategoryTheory.CategoryStruct.comp (appā X) (G.map f) := by cat_disch) : ({ app := app, naturality := naturality } = { app := appā, naturality := naturalityā }) = (app = appā) - CategoryTheory.Functor.map_isIso š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) (f : X ā¶ Y) [CategoryTheory.IsIso f] : CategoryTheory.IsIso (F.map f) - CategoryTheory.Functor.mapIso_hom š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (i : X ā Y) : (F.mapIso i).hom = F.map i.hom - CategoryTheory.Functor.mapIso_inv š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (i : X ā Y) : (F.mapIso i).inv = F.map i.inv - CategoryTheory.Functor.map_inv š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso f] : F.map (CategoryTheory.inv f) = CategoryTheory.inv (F.map f) - CategoryTheory.Iso.map_hom_inv_id š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C D) : CategoryTheory.CategoryStruct.comp (F.map e.hom) (F.map e.inv) = CategoryTheory.CategoryStruct.id (F.obj X) - CategoryTheory.Iso.map_inv_hom_id š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C D) : CategoryTheory.CategoryStruct.comp (F.map e.inv) (F.map e.hom) = CategoryTheory.CategoryStruct.id (F.obj Y) - CategoryTheory.Functor.map_hom_inv š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso f] : CategoryTheory.CategoryStruct.comp (F.map f) (F.map (CategoryTheory.inv f)) = CategoryTheory.CategoryStruct.id (F.obj X) - CategoryTheory.Functor.map_inv_hom š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso f] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.inv f)) (F.map f) = CategoryTheory.CategoryStruct.id (F.obj Y) - CategoryTheory.Iso.map_hom_inv_id_assoc š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C D) {Z : D} (h : F.obj X ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map e.hom) (CategoryTheory.CategoryStruct.comp (F.map e.inv) h) = h - CategoryTheory.Iso.map_inv_hom_id_assoc š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C D) {Z : D} (h : F.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map e.inv) (CategoryTheory.CategoryStruct.comp (F.map e.hom) h) = h - CategoryTheory.Functor.map_hom_inv_assoc š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso f] {Z : D} (h : F.obj X ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.inv f)) h) = h - CategoryTheory.Functor.map_inv_hom_assoc š Mathlib.CategoryTheory.Iso
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso f] {Z : D} (h : F.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.inv f)) (CategoryTheory.CategoryStruct.comp (F.map f) h) = h - CategoryTheory.NatTrans.hcomp_id_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C D} {H : CategoryTheory.Functor D E} (α : F ā¶ G) (X : C) : (α ā« CategoryTheory.CategoryStruct.id H).app X = H.map (α.app X) - CategoryTheory.NatTrans.hcomp_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C D} {H I : CategoryTheory.Functor D E} (α : F ā¶ G) (β : H ā¶ I) (X : C) : (α ⫠β).app X = CategoryTheory.CategoryStruct.comp (β.app (F.obj X)) (I.map (α.app X)) - CategoryTheory.Functor.flip_obj_map š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (k : D) {Xā Yā : C} (f : Xā ā¶ Yā) : (F.flip.obj k).map f = (F.map f).app k - CategoryTheory.flipFunctor_map_app_app š Mathlib.CategoryTheory.Functor.Category
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] {Fā Fā : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (Ļ : Fā ā¶ Fā) (Y : D) (X : C) : (((CategoryTheory.flipFunctor C D E).map Ļ).app Y).app X = (Ļ.app X).app Y - CategoryTheory.Iso.map_hom_inv_id_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (Z : D) : CategoryTheory.CategoryStruct.comp ((F.map e.hom).app Z) ((F.map e.inv).app Z) = CategoryTheory.CategoryStruct.id ((F.obj X).obj Z) - CategoryTheory.Iso.map_inv_hom_id_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (Z : D) : CategoryTheory.CategoryStruct.comp ((F.map e.inv).app Z) ((F.map e.hom).app Z) = CategoryTheory.CategoryStruct.id ((F.obj Y).obj Z) - CategoryTheory.Iso.map_hom_inv_id_app_assoc š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (Z : D) {Zā : E} (h : (F.obj X).obj Z ā¶ Zā) : CategoryTheory.CategoryStruct.comp ((F.map e.hom).app Z) (CategoryTheory.CategoryStruct.comp ((F.map e.inv).app Z) h) = h - CategoryTheory.Iso.map_inv_hom_id_app_assoc š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {X Y : C} (e : X ā Y) (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (Z : D) {Zā : E} (h : (F.obj Y).obj Z ā¶ Zā) : CategoryTheory.CategoryStruct.comp ((F.map e.inv).app Z) (CategoryTheory.CategoryStruct.comp ((F.map e.hom).app Z) h) = h - CategoryTheory.Functor.flip_map_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) {Xā Yā : D} (f : Xā ā¶ Yā) (j : C) : (F.flip.map f).app j = (F.obj j).map f - CategoryTheory.NatTrans.app_naturality š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : F ā¶ G) (X : C) {Y Z : D} (f : Y ā¶ Z) : CategoryTheory.CategoryStruct.comp ((F.obj X).map f) ((T.app X).app Z) = CategoryTheory.CategoryStruct.comp ((T.app X).app Y) ((G.obj X).map f) - CategoryTheory.NatTrans.naturality_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : F ā¶ G) (Z : D) {X Y : C} (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp ((F.map f).app Z) ((T.app Y).app Z) = CategoryTheory.CategoryStruct.comp ((T.app X).app Z) ((G.map f).app Z) - CategoryTheory.NatTrans.app_naturality_assoc š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : F ā¶ G) (X : C) {Y Z : D} (f : Y ā¶ Z) {Zā : E} (h : (G.obj X).obj Z ā¶ Zā) : CategoryTheory.CategoryStruct.comp ((F.obj X).map f) (CategoryTheory.CategoryStruct.comp ((T.app X).app Z) h) = CategoryTheory.CategoryStruct.comp ((T.app X).app Y) (CategoryTheory.CategoryStruct.comp ((G.obj X).map f) h) - CategoryTheory.NatTrans.naturality_app_assoc š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D E)} (T : F ā¶ G) (Z : D) {X Y : C} (f : X ā¶ Y) {Zā : E} (h : (G.obj Y).obj Z ā¶ Zā) : CategoryTheory.CategoryStruct.comp ((F.map f).app Z) (CategoryTheory.CategoryStruct.comp ((T.app Y).app Z) h) = CategoryTheory.CategoryStruct.comp ((T.app X).app Z) (CategoryTheory.CategoryStruct.comp ((G.map f).app Z) h) - CategoryTheory.NatTrans.naturality_app_app š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {E' : Type uā} [CategoryTheory.Category.{vā, uā} E'] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D (CategoryTheory.Functor E E'))} (α : F ā¶ G) {Xā Yā : C} (f : Xā ā¶ Yā) (Xā : D) (Xā : E) : CategoryTheory.CategoryStruct.comp (((F.map f).app Xā).app Xā) (((α.app Yā).app Xā).app Xā) = CategoryTheory.CategoryStruct.comp (((α.app Xā).app Xā).app Xā) (((G.map f).app Xā).app Xā) - CategoryTheory.NatTrans.naturality_app_app_assoc š Mathlib.CategoryTheory.Functor.Category
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {E' : Type uā} [CategoryTheory.Category.{vā, uā} E'] {F G : CategoryTheory.Functor C (CategoryTheory.Functor D (CategoryTheory.Functor E E'))} (α : F ā¶ G) {Xā Yā : C} (f : Xā ā¶ Yā) (Xā : D) (Xā : E) {Z : E'} (h : ((G.obj Yā).obj Xā).obj Xā ā¶ Z) : CategoryTheory.CategoryStruct.comp (((F.map f).app Xā).app Xā) (CategoryTheory.CategoryStruct.comp (((α.app Yā).app Xā).app Xā) h) = CategoryTheory.CategoryStruct.comp (((α.app Xā).app Xā).app Xā) (CategoryTheory.CategoryStruct.comp (((G.map f).app Xā).app Xā) h) - CategoryTheory.NatIso.isIso_map_iff š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {Fā Fā : CategoryTheory.Functor C D} (e : Fā ā Fā) {X Y : C} (f : X ā¶ Y) : CategoryTheory.IsIso (Fā.map f) ā CategoryTheory.IsIso (Fā.map f) - CategoryTheory.Functor.copyObj.eq_1 š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) (obj : C ā D) (e : (X : C) ā F.obj X ā obj X) : F.copyObj obj e = { obj := obj, map := fun {X Y} f => CategoryTheory.CategoryStruct.comp (e X).inv (CategoryTheory.CategoryStruct.comp (F.map f) (e Y).hom), map_id := āÆ, map_comp := ⯠} - CategoryTheory.NatIso.naturality_1 š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} {X Y : C} (α : F ā G) (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (α.inv.app X) (CategoryTheory.CategoryStruct.comp (F.map f) (α.hom.app Y)) = G.map f - CategoryTheory.NatIso.naturality_2 š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} {X Y : C} (α : F ā G) (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (α.hom.app X) (CategoryTheory.CategoryStruct.comp (G.map f) (α.inv.app Y)) = F.map f - CategoryTheory.NatIso.naturality_1' š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} {X Y : C} (α : F ā¶ G) (f : X ā¶ Y) {xā : CategoryTheory.IsIso (α.app X)} : CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (α.app X)) (CategoryTheory.CategoryStruct.comp (F.map f) (α.app Y)) = G.map f - CategoryTheory.NatIso.naturality_2' š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} {X Y : C} (α : F ā¶ G) (f : X ā¶ Y) {xā : CategoryTheory.IsIso (α.app Y)} : CategoryTheory.CategoryStruct.comp (α.app X) (CategoryTheory.CategoryStruct.comp (G.map f) (CategoryTheory.inv (α.app Y))) = F.map f - CategoryTheory.NatIso.ofComponents š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app : (X : C) ā F.obj X ā G.obj X) (naturality : ā {X Y : C} (f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y).hom = CategoryTheory.CategoryStruct.comp (app X).hom (G.map f) := by cat_disch) : F ā G - CategoryTheory.NatIso.ofComponents.app š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app' : (X : C) ā F.obj X ā G.obj X) (naturality : ā {X Y : C} (f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app' Y).hom = CategoryTheory.CategoryStruct.comp (app' X).hom (G.map f)) (X : C) : (CategoryTheory.NatIso.ofComponents app' naturality).app X = app' X - CategoryTheory.NatIso.naturality_2'_assoc š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} {X Y : C} (α : F ā¶ G) (f : X ā¶ Y) {xā : CategoryTheory.IsIso (α.app Y)} {Z : D} (h : F.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (α.app X) (CategoryTheory.CategoryStruct.comp (G.map f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (α.app Y)) h)) = CategoryTheory.CategoryStruct.comp (F.map f) h - CategoryTheory.NatIso.ofComponents_hom_app š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app : (X : C) ā F.obj X ā G.obj X) (naturality : ā {X Y : C} (f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y).hom = CategoryTheory.CategoryStruct.comp (app X).hom (G.map f) := by cat_disch) (X : C) : (CategoryTheory.NatIso.ofComponents app naturality).hom.app X = (app X).hom - CategoryTheory.NatIso.ofComponents_inv_app š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F G : CategoryTheory.Functor C D} (app : (X : C) ā F.obj X ā G.obj X) (naturality : ā {X Y : C} (f : X ā¶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (app Y).hom = CategoryTheory.CategoryStruct.comp (app X).hom (G.map f) := by cat_disch) (X : C) : (CategoryTheory.NatIso.ofComponents app naturality).inv.app X = (app X).inv - CategoryTheory.NatIso.inv_map_inv_app š Mathlib.CategoryTheory.NatIso
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) {X Y : C} (e : X ā Y) (Z : D) : CategoryTheory.inv ((F.map e.inv).app Z) = (F.map e.hom).app Z - CategoryTheory.Functor.FullyFaithful.preimage_map š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (self : F.FullyFaithful) {X Y : C} (f : X ā¶ Y) : self.preimage (F.map f) = f - CategoryTheory.Functor.preimage_map š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} {X Y : C} [F.Full] [F.Faithful] (f : X ā¶ Y) : F.preimage (F.map f) = f - CategoryTheory.Functor.map_injective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {X Y : C} (F : CategoryTheory.Functor C D) [F.Faithful] : Function.Injective F.map - CategoryTheory.Functor.map_surjective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {X Y : C} (F : CategoryTheory.Functor C D) [F.Full] : Function.Surjective F.map - CategoryTheory.Functor.Faithful.map_injective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} {instā : CategoryTheory.Category.{vā, uā} C} {D : Type uā} {instā¹ : CategoryTheory.Category.{vā, uā} D} {F : CategoryTheory.Functor C D} [self : F.Faithful] {X Y : C} : Function.Injective F.map - CategoryTheory.Functor.Full.map_surjective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} {instā : CategoryTheory.Category.{vā, uā} C} {D : Type uā} {instā¹ : CategoryTheory.Category.{vā, uā} D} {F : CategoryTheory.Functor C D} [self : F.Full] {X Y : C} : Function.Surjective F.map - CategoryTheory.Functor.Full.mk š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (map_surjective : ā {X Y : C}, Function.Surjective F.map) : F.Full - CategoryTheory.Functor.FullyFaithful.map_bijective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) (X Y : C) : Function.Bijective F.map - CategoryTheory.Functor.FullyFaithful.map_surjective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) {X Y : C} : Function.Surjective F.map - CategoryTheory.Functor.Faithful.mk š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (map_injective : ā {X Y : C}, Function.Injective F.map := by cat_disch) : F.Faithful - CategoryTheory.Functor.FullyFaithful.isIso_of_isIso_map š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso (F.map f)] : CategoryTheory.IsIso f - CategoryTheory.isIso_of_fully_faithful š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) [F.Full] [F.Faithful] {X Y : C} (f : X ā¶ Y) [CategoryTheory.IsIso (F.map f)] : CategoryTheory.IsIso f - CategoryTheory.Functor.FullyFaithful.map_injective š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) {X Y : C} {f g : X ā¶ Y} (h : F.map f = F.map g) : f = g - CategoryTheory.Functor.map_injective_iff š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) [F.Faithful] {X Y : C} (f g : X ā¶ Y) : F.map f = F.map g ā f = g - CategoryTheory.Functor.map_preimage š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) [F.Full] {X Y : C} (f : F.obj X ā¶ F.obj Y) : F.map (F.preimage f) = f - CategoryTheory.Functor.FullyFaithful.map_preimage š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (self : F.FullyFaithful) {X Y : C} (f : F.obj X ā¶ F.obj Y) : F.map (self.preimage f) = f - CategoryTheory.Functor.FullyFaithful.mk š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (preimage : {X Y : C} ā (F.obj X ā¶ F.obj Y) ā (X ā¶ Y)) (map_preimage : ā {X Y : C} (f : F.obj X ā¶ F.obj Y), F.map (preimage f) = f := by cat_disch) (preimage_map : ā {X Y : C} (f : X ā¶ Y), preimage (F.map f) = f := by cat_disch) : F.FullyFaithful - CategoryTheory.Functor.Faithful.div š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C E) (G : CategoryTheory.Functor D E) [G.Faithful] (obj : C ā D) (h_obj : ā (X : C), G.obj (obj X) = F.obj X) (map : {X Y : C} ā (X ā¶ Y) ā (obj X ā¶ obj Y)) (h_map : ā {X Y : C} {f : X ā¶ Y}, G.map (map f) ā F.map f) : CategoryTheory.Functor C D - CategoryTheory.Functor.Faithful.div_faithful š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C E) [F.Faithful] (G : CategoryTheory.Functor D E) [G.Faithful] (obj : C ā D) (h_obj : ā (X : C), G.obj (obj X) = F.obj X) (map : {X Y : C} ā (X ā¶ Y) ā (obj X ā¶ obj Y)) (h_map : ā {X Y : C} {f : X ā¶ Y}, G.map (map f) ā F.map f) : (CategoryTheory.Functor.Faithful.div F G obj h_obj map h_map).Faithful - CategoryTheory.Functor.FullyFaithful.mk.sizeOf_spec š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} [SizeOf C] [SizeOf D] (preimage : {X Y : C} ā (F.obj X ā¶ F.obj Y) ā (X ā¶ Y)) (map_preimage : ā {X Y : C} (f : F.obj X ā¶ F.obj Y), F.map (preimage f) = f := by cat_disch) (preimage_map : ā {X Y : C} (f : X ā¶ Y), preimage (F.map f) = f := by cat_disch) : sizeOf { preimage := preimage, map_preimage := map_preimage, preimage_map := preimage_map } = 1 - CategoryTheory.Functor.Faithful.div_comp š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C E) [F.Faithful] (G : CategoryTheory.Functor D E) [G.Faithful] (obj : C ā D) (h_obj : ā (X : C), G.obj (obj X) = F.obj X) (map : {X Y : C} ā (X ā¶ Y) ā (obj X ā¶ obj Y)) (h_map : ā {X Y : C} {f : X ā¶ Y}, G.map (map f) ā F.map f) : (CategoryTheory.Functor.Faithful.div F G obj h_obj map h_map).comp G = F - CategoryTheory.Functor.FullyFaithful.homEquiv_apply š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (hF : F.FullyFaithful) {X Y : C} (aā : X ā¶ Y) : hF.homEquiv aā = F.map aā - CategoryTheory.Functor.FullyFaithful.mk.injEq š Mathlib.CategoryTheory.Functor.FullyFaithful
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} (preimage : {X Y : C} ā (F.obj X ā¶ F.obj Y) ā (X ā¶ Y)) (map_preimage : ā {X Y : C} (f : F.obj X ā¶ F.obj Y), F.map (preimage f) = f := by cat_disch) (preimage_map : ā {X Y : C} (f : X ā¶ Y), preimage (F.map f) = f := by cat_disch) (preimageā : {X Y : C} ā (F.obj X ā¶ F.obj Y) ā (X ā¶ Y)) (map_preimageā : ā {X Y : C} (f : F.obj X ā¶ F.obj Y), F.map (preimageā f) = f := by cat_disch) (preimage_mapā : ā {X Y : C} (f : X ā¶ Y), preimageā (F.map f) = f := by cat_disch) : ({ preimage := preimage, map_preimage := map_preimage, preimage_map := preimage_map } = { preimage := preimageā, map_preimage := map_preimageā, preimage_map := preimage_mapā }) = (preimage = preimageā) - CategoryTheory.inducedFunctor_map š Mathlib.CategoryTheory.InducedCategory
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{v, uā} D] (F : C ā D) {Xā Yā : CategoryTheory.InducedCategory D F} (f : Xā ā¶ Yā) : (CategoryTheory.inducedFunctor F).map f = f - CategoryTheory.ObjectProperty.ιOfLE_map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] {P P' : CategoryTheory.ObjectProperty C} (h : P ⤠P') {Xā Yā : P.FullSubcategory} (f : Xā ā¶ Yā) : (CategoryTheory.ObjectProperty.ιOfLE h).map f = f - CategoryTheory.ObjectProperty.lift_map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (P : CategoryTheory.ObjectProperty D) (F : CategoryTheory.Functor C D) (hF : ā (X : C), P (F.obj X)) {Xā Yā : C} (f : Xā ā¶ Yā) : (P.lift F hF).map f = F.map f - CategoryTheory.ObjectProperty.ι_map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.ObjectProperty C) {X Y : P.FullSubcategory} {f : X ā¶ Y} : P.ι.map f = f - CategoryTheory.fullSubcategoryInclusion.map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] (P : CategoryTheory.ObjectProperty C) {X Y : P.FullSubcategory} {f : X ā¶ Y} : P.ι.map f = f - CategoryTheory.fullSubcategoryInclusion_map_lift_map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (P : CategoryTheory.ObjectProperty D) (F : CategoryTheory.Functor C D) (hF : ā (X : C), P (F.obj X)) {X Y : C} (f : X ā¶ Y) : P.ι.map ((P.lift F hF).map f) = F.map f - CategoryTheory.ObjectProperty.ι_obj_lift_map š Mathlib.CategoryTheory.ObjectProperty.FullSubcategory
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (P : CategoryTheory.ObjectProperty D) (F : CategoryTheory.Functor C D) (hF : ā (X : C), P (F.obj X)) {X Y : C} (f : X ā¶ Y) : P.ι.map ((P.lift F hF).map f) = F.map f - CategoryTheory.Functor.whiskerRight_app š Mathlib.CategoryTheory.Whiskering
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {G H : CategoryTheory.Functor C D} (α : G ā¶ H) (F : CategoryTheory.Functor D E) (X : C) : (CategoryTheory.Functor.whiskerRight α F).app X = F.map (α.app X) - CategoryTheory.Functor.whiskeringLeft_obj_map š Mathlib.CategoryTheory.Whiskering
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] (F : CategoryTheory.Functor C D) {Xā Yā : CategoryTheory.Functor D E} (α : Xā ā¶ Yā) : ((CategoryTheory.Functor.whiskeringLeft C D E).obj F).map α = F.whiskerLeft α - CategoryTheory.Functor.whiskeringRight_obj_map š Mathlib.CategoryTheory.Whiskering
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] (H : CategoryTheory.Functor D E) {Xā Yā : CategoryTheory.Functor C D} (α : Xā ā¶ Yā) : ((CategoryTheory.Functor.whiskeringRight C D E).obj H).map α = CategoryTheory.Functor.whiskerRight α H - CategoryTheory.Functor.whiskeringLeftāObjObj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} (Cā : Type u_3) {Dā : Type u_4} {Dā : Type u_5} (Dā : Type u_6) [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļā : Xā ā¶ Yā) : (CategoryTheory.Functor.whiskeringLeftāObjObj Cā Dā E Fā Fā).map Ļā = CategoryTheory.Functor.whiskeringLeftāObjObjMap E Fā Fā Ļā - CategoryTheory.Functor.postcomposeā_obj_obj_obj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] {E : Type u_7} [CategoryTheory.Category.{u_11, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_12, u_8} E'] (X : CategoryTheory.Functor E E') (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E)) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) : (((CategoryTheory.Functor.postcomposeā.obj X).obj F).obj Xā).map f = X.map ((F.obj Xā).map f) - CategoryTheory.Functor.whiskeringRight_map_app_app š Mathlib.CategoryTheory.Whiskering
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] {Xā Yā : CategoryTheory.Functor D E} (Ļ : Xā ā¶ Yā) (F : CategoryTheory.Functor C D) (c : C) : (((CategoryTheory.Functor.whiskeringRight C D E).map Ļ).app F).app c = Ļ.app (F.obj c) - CategoryTheory.Functor.whiskeringLeft_map_app_app š Mathlib.CategoryTheory.Whiskering
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] {Xā Yā : CategoryTheory.Functor C D} (Ļ : Xā ā¶ Yā) (H : CategoryTheory.Functor D E) (c : C) : (((CategoryTheory.Functor.whiskeringLeft C D E).map Ļ).app H).app c = H.map (Ļ.app c) - CategoryTheory.Functor.whiskeringLeftāObjObjObj_obj_obj_obj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (Xā : Cā) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) : ((((CategoryTheory.Functor.whiskeringLeftāObjObjObj E Fā Fā Fā).obj X).obj Xā).obj Xā).map f = ((X.obj (Fā.obj Xā)).obj (Fā.obj Xā)).map (Fā.map f) - CategoryTheory.Functor.postcomposeā_obj_obj_map_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] {E : Type u_7} [CategoryTheory.Category.{u_11, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_12, u_8} E'] (X : CategoryTheory.Functor E E') (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E)) {Xā Yā : Cā} (f : Xā ā¶ Yā) (Xā¹ : Cā) : (((CategoryTheory.Functor.postcomposeā.obj X).obj F).map f).app Xā¹ = X.map ((F.map f).app Xā¹) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_obj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Dā : Type u_4} {Dā : Type u_5} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_4} Dā] [CategoryTheory.Category.{u_11, u_5} Dā] (E : Type u_7) [CategoryTheory.Category.{u_12, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) : (((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj X).obj Xā).map f = (X.obj (Fā.obj Xā)).map (Fā.map f) - CategoryTheory.Functor.whiskeringLeftāObj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} (Cā : Type u_2) (Cā : Type u_3) {Dā : Type u_4} (Dā : Type u_5) (Dā : Type u_6) [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļā : Xā ā¶ Yā) : (CategoryTheory.Functor.whiskeringLeftāObj Cā Cā Dā Dā E Fā).map Ļā = CategoryTheory.Functor.whiskeringLeftāObjMap Cā Dā E Fā Ļā - CategoryTheory.Functor.postcomposeā_obj_map_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] {E : Type u_7} [CategoryTheory.Category.{u_11, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_12, u_8} E'] (X : CategoryTheory.Functor E E') {Xā Yā : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E)} (α : Xā ā¶ Yā) (Xā¹ : Cā) (Xā¹ : Cā) : (((CategoryTheory.Functor.postcomposeā.obj X).map α).app Xā¹).app Xā¹ = X.map ((α.app Xā¹).app Xā¹) - CategoryTheory.Functor.postcomposeā_obj_obj_obj_obj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] [CategoryTheory.Category.{u_11, u_3} Cā] {E : Type u_7} [CategoryTheory.Category.{u_12, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_13, u_8} E'] (X : CategoryTheory.Functor E E') (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))) (Xā : Cā) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) : ((((CategoryTheory.Functor.postcomposeā.obj X).obj F).obj Xā).obj Xā).map f = X.map (((F.obj Xā).obj Xā).map f) - CategoryTheory.Functor.postcomposeā_obj_obj_obj_map_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] [CategoryTheory.Category.{u_11, u_3} Cā] {E : Type u_7} [CategoryTheory.Category.{u_12, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_13, u_8} E'] (X : CategoryTheory.Functor E E') (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) (Xā : Cā) : ((((CategoryTheory.Functor.postcomposeā.obj X).obj F).obj Xā).map f).app Xā = X.map (((F.obj Xā).map f).app Xā) - CategoryTheory.Functor.whiskeringLeftāObjObjObj_obj_obj_map_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) (Xā : Cā) : ((((CategoryTheory.Functor.whiskeringLeftāObjObjObj E Fā Fā Fā).obj X).obj Xā).map f).app Xā = ((X.obj (Fā.obj Xā)).map (Fā.map f)).app (Fā.obj Xā) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_map_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Dā : Type u_4} {Dā : Type u_5} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_4} Dā] [CategoryTheory.Category.{u_11, u_5} Dā] (E : Type u_7) [CategoryTheory.Category.{u_12, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) {Xā Yā : Cā} (f : Xā ā¶ Yā) (Xā¹ : Cā) : (((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj X).map f).app Xā¹ = (X.map (Fā.map f)).app (Fā.obj Xā¹) - CategoryTheory.Functor.postcomposeā_map_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] {E : Type u_7} [CategoryTheory.Category.{u_11, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_12, u_8} E'] {Xā Yā : CategoryTheory.Functor E E'} (f : Xā ā¶ Yā) (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E)) (c : Cā) (cā : Cā) : (((CategoryTheory.Functor.postcomposeā.map f).app F).app c).app cā = f.app ((F.obj c).obj cā) - CategoryTheory.Functor.postcomposeā_obj_obj_map_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] [CategoryTheory.Category.{u_11, u_3} Cā] {E : Type u_7} [CategoryTheory.Category.{u_12, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_13, u_8} E'] (X : CategoryTheory.Functor E E') (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))) {Xā Yā : Cā} (f : Xā ā¶ Yā) (Xā¹ : Cā) (Xā¹ : Cā) : ((((CategoryTheory.Functor.postcomposeā.obj X).obj F).map f).app Xā¹).app Xā¹ = X.map (((F.map f).app Xā¹).app Xā¹) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_map_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Dā : Type u_4} {Dā : Type u_5} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_4} Dā] [CategoryTheory.Category.{u_11, u_5} Dā] (E : Type u_7) [CategoryTheory.Category.{u_12, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)} (f : Xā ā¶ Yā) (X : Cā) (Xā¹ : Cā) : (((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).map f).app X).app Xā¹ = (f.app (Fā.obj X)).app (Fā.obj Xā¹) - CategoryTheory.Functor.postcomposeā_obj_map_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] [CategoryTheory.Category.{u_11, u_3} Cā] {E : Type u_7} [CategoryTheory.Category.{u_12, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_13, u_8} E'] (X : CategoryTheory.Functor E E') {Xā Yā : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))} (α : Xā ā¶ Yā) (Xā¹ : Cā) (Xā¹ : Cā) (Xā¹ : Cā) : ((((CategoryTheory.Functor.postcomposeā.obj X).map α).app Xā¹).app Xā¹).app Xā¹ = X.map (((α.app Xā¹).app Xā¹).app Xā¹) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_obj_obj_obj_map š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (Xā : Cā) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj Fā).obj X).obj Xā).obj Xā).map f = ((X.obj (Fā.obj Xā)).obj (Fā.obj Xā)).map (Fā.map f) - CategoryTheory.Functor.whiskeringLeftā_obj_map_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Dā : Type u_4} {Dā : Type u_5} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_4} Dā] [CategoryTheory.Category.{u_11, u_5} Dā] (E : Type u_7) [CategoryTheory.Category.{u_12, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļ : Xā ā¶ Yā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) (Xā¹ : Cā) (c : Cā) : (((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).map Ļ).app X).app Xā¹).app c = (X.obj (Fā.obj Xā¹)).map (Ļ.app c) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_obj_obj_map_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (Xā : Cā) {Xā¹ Yā : Cā} (f : Xā¹ ā¶ Yā) (Xā : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj Fā).obj X).obj Xā).map f).app Xā = ((X.obj (Fā.obj Xā)).map (Fā.map f)).app (Fā.obj Xā) - CategoryTheory.Functor.whiskeringLeftāObjObjObj_obj_map_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) {Xā Yā : Cā} (f : Xā ā¶ Yā) (Xā¹ : Cā) (Xā¹ : Cā) : ((((CategoryTheory.Functor.whiskeringLeftāObjObjObj E Fā Fā Fā).obj X).map f).app Xā¹).app Xā¹ = ((X.map (Fā.map f)).app (Fā.obj Xā¹)).app (Fā.obj Xā¹) - CategoryTheory.Functor.whiskeringLeftāObjObjMap_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Fā Fā' : CategoryTheory.Functor Cā Dā} (Ļā : Fā ā¶ Fā') (F : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) : (CategoryTheory.Functor.whiskeringLeftāObjObjMap E Fā Fā Ļā).app F = Fā.whiskerLeft (F.whiskerLeft (((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).map Ļā)) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_obj_map_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) {Xā Yā : Cā} (f : Xā ā¶ Yā) (Xā¹ : Cā) (Xā¹ : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj Fā).obj X).map f).app Xā¹).app Xā¹ = ((X.map (Fā.map f)).app (Fā.obj Xā¹)).app (Fā.obj Xā¹) - CategoryTheory.Functor.postcomposeā_map_app_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} [CategoryTheory.Category.{u_9, u_1} Cā] [CategoryTheory.Category.{u_10, u_2} Cā] [CategoryTheory.Category.{u_11, u_3} Cā] {E : Type u_7} [CategoryTheory.Category.{u_12, u_7} E] {E' : Type u_8} [CategoryTheory.Category.{u_13, u_8} E'] {Xā Yā : CategoryTheory.Functor E E'} (f : Xā ā¶ Yā) (F : CategoryTheory.Functor Cā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))) (c : Cā) (cā : Cā) (cā : Cā) : ((((CategoryTheory.Functor.postcomposeā.map f).app F).app c).app cā).app cā = f.app (((F.obj c).obj cā).obj cā) - CategoryTheory.Functor.whiskeringLeftāMap_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} (Cā : Type u_2) (Cā : Type u_3) {Dā : Type u_4} (Dā : Type u_5) (Dā : Type u_6) [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] {Fā Fā' : CategoryTheory.Functor Cā Dā} (Ļā : Fā ā¶ Fā') (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) : ((CategoryTheory.Functor.whiskeringLeftāMap Cā Cā Dā Dā E Ļā).app Fā).app Fā = ((CategoryTheory.Functor.whiskeringRight Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))).obj (((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā)).whiskerLeft ((CategoryTheory.Functor.whiskeringLeft Cā Dā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))).map Ļā) - CategoryTheory.Functor.whiskeringLeftāObjObjObj_map_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))} (f : Xā ā¶ Yā) (X : Cā) (Xā¹ : Cā) (Xā¹ : Cā) : ((((CategoryTheory.Functor.whiskeringLeftāObjObjObj E Fā Fā Fā).map f).app X).app Xā¹).app Xā¹ = ((f.app (Fā.obj X)).app (Fā.obj Xā¹)).app (Fā.obj Xā¹) - CategoryTheory.Functor.whiskeringLeftā_map_app_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Dā : Type u_4} {Dā : Type u_5} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_4} Dā] [CategoryTheory.Category.{u_11, u_5} Dā] (E : Type u_7) [CategoryTheory.Category.{u_12, u_7} E] {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļ : Xā ā¶ Yā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) (c : Cā) (Xā¹ : Cā) : (((((CategoryTheory.Functor.whiskeringLeftā E).map Ļ).app Fā).app X).app c).app Xā¹ = (X.map (Ļ.app c)).app (Fā.obj Xā¹) - CategoryTheory.Functor.whiskeringLeftāObjMap_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} (Cā : Type u_3) {Dā : Type u_4} {Dā : Type u_5} (Dā : Type u_6) [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) {Fā Fā' : CategoryTheory.Functor Cā Dā} (Ļā : Fā ā¶ Fā') (Fā : CategoryTheory.Functor Cā Dā) : (CategoryTheory.Functor.whiskeringLeftāObjMap Cā Dā E Fā Ļā).app Fā = CategoryTheory.Functor.whiskerRight ((CategoryTheory.Functor.whiskeringRight Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E)) (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))).map (((CategoryTheory.Functor.whiskeringLeftā E).map Ļā).app Fā)) ((CategoryTheory.Functor.whiskeringLeft Cā Dā (CategoryTheory.Functor Cā (CategoryTheory.Functor Cā E))).obj Fā) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_map_app_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļā : Xā ā¶ Yā) (F : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (X : Cā) (Xā¹ : Cā) (c : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).map Ļā).app F).app X).app Xā¹).app c = ((F.obj (Fā.obj X)).obj (Fā.obj Xā¹)).map (Ļā.app c) - CategoryTheory.Functor.whiskeringLeftā_obj_obj_obj_map_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))} (f : Xā ā¶ Yā) (X : Cā) (Xā¹ : Cā) (Xā¹ : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).obj Fā).obj Fā).map f).app X).app Xā¹).app Xā¹ = ((f.app (Fā.obj X)).app (Fā.obj Xā¹)).app (Fā.obj Xā¹) - CategoryTheory.Functor.whiskeringLeftā_obj_map_app_app_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] (Fā : CategoryTheory.Functor Cā Dā) {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļā : Xā ā¶ Yā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (Xā¹ : Cā) (c : Cā) (Xā¹ : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).obj Fā).map Ļā).app Fā).app X).app Xā¹).app c).app Xā¹ = ((X.obj (Fā.obj Xā¹)).map (Ļā.app c)).app (Fā.obj Xā¹) - CategoryTheory.Functor.whiskeringLeftā_map_app_app_app_app_app_app š Mathlib.CategoryTheory.Whiskering
{Cā : Type u_1} {Cā : Type u_2} {Cā : Type u_3} {Dā : Type u_4} {Dā : Type u_5} {Dā : Type u_6} [CategoryTheory.Category.{u_8, u_1} Cā] [CategoryTheory.Category.{u_9, u_2} Cā] [CategoryTheory.Category.{u_10, u_3} Cā] [CategoryTheory.Category.{u_11, u_4} Dā] [CategoryTheory.Category.{u_12, u_5} Dā] [CategoryTheory.Category.{u_13, u_6} Dā] (E : Type u_7) [CategoryTheory.Category.{u_14, u_7} E] {Xā Yā : CategoryTheory.Functor Cā Dā} (Ļā : Xā ā¶ Yā) (Fā : CategoryTheory.Functor Cā Dā) (Fā : CategoryTheory.Functor Cā Dā) (X : CategoryTheory.Functor Dā (CategoryTheory.Functor Dā (CategoryTheory.Functor Dā E))) (c : Cā) (Xā¹ : Cā) (Xā¹ : Cā) : (((((((CategoryTheory.Functor.whiskeringLeftā E).map Ļā).app Fā).app Fā).app X).app c).app Xā¹).app Xā¹ = ((X.map (Ļā.app c)).app (Fā.obj Xā¹)).app (Fā.obj Xā¹) - CategoryTheory.Functor.toEssImage_map š Mathlib.CategoryTheory.EssentialImage
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {Xā Yā : C} (f : Xā ā¶ Yā) : F.toEssImage.map f = F.map f - CategoryTheory.Functor.essImage_ext š Mathlib.CategoryTheory.EssentialImage
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {X Y : F.EssImageSubcategory} (f g : X ā¶ Y) (h : F.essImage.ι.map f = F.essImage.ι.map g) : f = g - CategoryTheory.Functor.essImage.liftFunctor_map š Mathlib.CategoryTheory.EssentialImage
{J : Type u_1} {C : Type u_2} {D : Type u_3} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} C] [CategoryTheory.Category.{u_6, u_3} D] (G : CategoryTheory.Functor J D) (F : CategoryTheory.Functor C D) [F.Full] [F.Faithful] (hG : ā (j : J), F.essImage (G.obj j)) {i j : J} (f : i ā¶ j) : (CategoryTheory.Functor.essImage.liftFunctor G F hG).map f = F.preimage (CategoryTheory.CategoryStruct.comp (F.toEssImage.objObjPreimageIso { obj := G.obj i, property := ⯠}).hom (CategoryTheory.CategoryStruct.comp (G.map f) (F.toEssImage.objObjPreimageIso { obj := G.obj j, property := ⯠}).inv)) - CategoryTheory.Equivalence.functorFunctor_map š Mathlib.CategoryTheory.Equivalence
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] {Xā Yā : C ā D} (α : Xā ā¶ Yā) : (CategoryTheory.Equivalence.functorFunctor C D).map α = CategoryTheory.Equivalence.asNatTrans α - CategoryTheory.Equivalence.funInvIdAssoc_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (e : C ā D) (F : CategoryTheory.Functor C E) (X : C) : (e.funInvIdAssoc F).hom.app X = F.map (e.unitInv.app X) - CategoryTheory.Equivalence.funInvIdAssoc_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (e : C ā D) (F : CategoryTheory.Functor C E) (X : C) : (e.funInvIdAssoc F).inv.app X = F.map (e.unit.app X) - CategoryTheory.Equivalence.invFunIdAssoc_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (e : C ā D) (F : CategoryTheory.Functor D E) (X : D) : (e.invFunIdAssoc F).hom.app X = F.map (e.counit.app X) - CategoryTheory.Equivalence.invFunIdAssoc_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] (e : C ā D) (F : CategoryTheory.Functor D E) (X : D) : (e.invFunIdAssoc F).inv.app X = F.map (e.counitInv.app X) - CategoryTheory.Equivalence.counitInv_app_functor š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) : e.counitInv.app (e.functor.obj X) = e.functor.map (e.unit.app X) - CategoryTheory.Equivalence.counit_app_functor š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) : e.counit.app (e.functor.obj X) = e.functor.map (e.unitInv.app X) - CategoryTheory.Equivalence.unitInv_app_inverse š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) : e.unitInv.app (e.inverse.obj Y) = e.inverse.map (e.counit.app Y) - CategoryTheory.Equivalence.unit_app_inverse š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) : e.unit.app (e.inverse.obj Y) = e.inverse.map (e.counitInv.app Y) - CategoryTheory.Equivalence.changeFunctor_unitIso_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {G : CategoryTheory.Functor C D} (iso : e.functor ā G) (X : C) : (e.changeFunctor iso).unitIso.hom.app X = CategoryTheory.CategoryStruct.comp (e.unitIso.hom.app X) (e.inverse.map (iso.hom.app X)) - CategoryTheory.Equivalence.changeFunctor_unitIso_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {G : CategoryTheory.Functor C D} (iso : e.functor ā G) (X : C) : (e.changeFunctor iso).unitIso.inv.app X = CategoryTheory.CategoryStruct.comp (e.inverse.map (iso.inv.app X)) (e.unitIso.inv.app X) - CategoryTheory.Equivalence.changeInverse_counitIso_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {G : CategoryTheory.Functor D C} (iso : e.inverse ā G) (X : D) : (e.changeInverse iso).counitIso.hom.app X = CategoryTheory.CategoryStruct.comp (e.functor.map (iso.inv.app X)) (e.counitIso.hom.app X) - CategoryTheory.Equivalence.changeInverse_counitIso_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {G : CategoryTheory.Functor D C} (iso : e.inverse ā G) (X : D) : (e.changeInverse iso).counitIso.inv.app X = CategoryTheory.CategoryStruct.comp (e.counitIso.inv.app X) (e.functor.map (iso.hom.app X)) - CategoryTheory.Equivalence.counitInv_naturality š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : D} (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (e.counitInv.app X) (e.functor.map (e.inverse.map f)) = CategoryTheory.CategoryStruct.comp f (e.counitInv.app Y) - CategoryTheory.Equivalence.unit_naturality š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : C} (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (e.unit.app X) (e.inverse.map (e.functor.map f)) = CategoryTheory.CategoryStruct.comp f (e.unit.app Y) - CategoryTheory.Equivalence.counitInv_functor_comp_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) {Z : D} (h : e.functor.obj X ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.counitInv.app (e.functor.obj X)) (CategoryTheory.CategoryStruct.comp (e.functor.map (e.unitInv.app X)) h) = h - CategoryTheory.Equivalence.functor_unit_comp_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) {Z : D} (h : e.functor.obj X ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.functor.map (e.unit.app X)) (CategoryTheory.CategoryStruct.comp (e.counit.app (e.functor.obj X)) h) = h - CategoryTheory.Equivalence.inverse_counitInv_comp_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) {Z : C} (h : e.inverse.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.inverse.map (e.counitInv.app Y)) (CategoryTheory.CategoryStruct.comp (e.unitInv.app (e.inverse.obj Y)) h) = h - CategoryTheory.Equivalence.unit_inverse_comp_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) {Z : C} (h : e.inverse.obj Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.unit.app (e.inverse.obj Y)) (CategoryTheory.CategoryStruct.comp (e.inverse.map (e.counit.app Y)) h) = h - CategoryTheory.Equivalence.adjointify_Ī·_ε_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (Ī· : CategoryTheory.Functor.id C ā F.comp G) (ε : G.comp F ā CategoryTheory.Functor.id D) (X : C) {Z : D} (h : F.obj X ā¶ Z) : CategoryTheory.CategoryStruct.comp (F.map ((CategoryTheory.Equivalence.adjointifyĪ· Ī· ε).hom.app X)) (CategoryTheory.CategoryStruct.comp (ε.hom.app (F.obj X)) h) = h - CategoryTheory.Equivalence.counit_naturality š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : D} (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (e.functor.map (e.inverse.map f)) (e.counit.app Y) = CategoryTheory.CategoryStruct.comp (e.counit.app X) f - CategoryTheory.Equivalence.unitInv_naturality š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : C} (f : X ā¶ Y) : CategoryTheory.CategoryStruct.comp (e.inverse.map (e.functor.map f)) (e.unitInv.app Y) = CategoryTheory.CategoryStruct.comp (e.unitInv.app X) f - CategoryTheory.Equivalence.fun_inv_map š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X Y : D) (f : X ā¶ Y) : e.functor.map (e.inverse.map f) = CategoryTheory.CategoryStruct.comp (e.counit.app X) (CategoryTheory.CategoryStruct.comp f (e.counitInv.app Y)) - CategoryTheory.Equivalence.inv_fun_map š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X Y : C) (f : X ā¶ Y) : e.inverse.map (e.functor.map f) = CategoryTheory.CategoryStruct.comp (e.unitInv.app X) (CategoryTheory.CategoryStruct.comp f (e.unit.app Y)) - CategoryTheory.Equivalence.functor_unit_comp š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) : CategoryTheory.CategoryStruct.comp (e.functor.map (e.unit.app X)) (e.counit.app (e.functor.obj X)) = CategoryTheory.CategoryStruct.id (e.functor.obj X) - CategoryTheory.Equivalence.inverse_counitInv_comp š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) : CategoryTheory.CategoryStruct.comp (e.inverse.map (e.counitInv.app Y)) (e.unitInv.app (e.inverse.obj Y)) = CategoryTheory.CategoryStruct.id (e.inverse.obj Y) - CategoryTheory.Equivalence.counitInv_naturality_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : D} (f : X ā¶ Y) {Z : D} (h : e.functor.obj (e.inverse.obj Y) ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.counitInv.app X) (CategoryTheory.CategoryStruct.comp (e.functor.map (e.inverse.map f)) h) = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (e.counitInv.app Y) h) - CategoryTheory.Equivalence.counit_naturality_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : D} (f : X ā¶ Y) {Z : D} (h : Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.functor.map (e.inverse.map f)) (CategoryTheory.CategoryStruct.comp (e.counit.app Y) h) = CategoryTheory.CategoryStruct.comp (e.counit.app X) (CategoryTheory.CategoryStruct.comp f h) - CategoryTheory.Equivalence.unitInv_naturality_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : C} (f : X ā¶ Y) {Z : C} (h : Y ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.inverse.map (e.functor.map f)) (CategoryTheory.CategoryStruct.comp (e.unitInv.app Y) h) = CategoryTheory.CategoryStruct.comp (e.unitInv.app X) (CategoryTheory.CategoryStruct.comp f h) - CategoryTheory.Equivalence.unit_naturality_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) {X Y : C} (f : X ā¶ Y) {Z : C} (h : e.inverse.obj (e.functor.obj Y) ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.unit.app X) (CategoryTheory.CategoryStruct.comp (e.inverse.map (e.functor.map f)) h) = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (e.unit.app Y) h) - CategoryTheory.Equivalence.counitInv_functor_comp š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X : C) : CategoryTheory.CategoryStruct.comp (e.counitInv.app (e.functor.obj X)) (e.functor.map (e.unitInv.app X)) = CategoryTheory.CategoryStruct.id (e.functor.obj X) - CategoryTheory.Equivalence.unit_inverse_comp š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (Y : D) : CategoryTheory.CategoryStruct.comp (e.unit.app (e.inverse.obj Y)) (e.inverse.map (e.counit.app Y)) = CategoryTheory.CategoryStruct.id (e.inverse.obj Y) - CategoryTheory.Equivalence.mk' š Mathlib.CategoryTheory.Equivalence
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unitIso : CategoryTheory.Functor.id C ā functor.comp inverse) (counitIso : inverse.comp functor ā CategoryTheory.Functor.id D) (functor_unitIso_comp : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unitIso.hom.app X)) (counitIso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X) := by cat_disch) : C ā D - CategoryTheory.Equivalence.adjointify_Ī·_ε š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (Ī· : CategoryTheory.Functor.id C ā F.comp G) (ε : G.comp F ā CategoryTheory.Functor.id D) (X : C) : CategoryTheory.CategoryStruct.comp (F.map ((CategoryTheory.Equivalence.adjointifyĪ· Ī· ε).hom.app X)) (ε.hom.app (F.obj X)) = CategoryTheory.CategoryStruct.id (F.obj X) - CategoryTheory.Iso.inverseCompIso_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D E} {G : C ā D} (i : F ā G.functor.comp H) (X : D) : i.inverseCompIso.hom.app X = CategoryTheory.CategoryStruct.comp (i.hom.app (G.inverse.obj X)) (H.map (G.counitIso.hom.app X)) - CategoryTheory.Iso.inverseCompIso_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D E} {G : C ā D} (i : F ā G.functor.comp H) (X : D) : i.inverseCompIso.inv.app X = CategoryTheory.CategoryStruct.comp (H.map (G.counitIso.inv.app X)) (i.inv.app (G.inverse.obj X)) - CategoryTheory.Iso.isoInverseComp_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D E} {G : C ā D} (i : G.functor.comp H ā F) (X : D) : i.isoInverseComp.hom.app X = CategoryTheory.CategoryStruct.comp (H.map (G.counitIso.inv.app X)) (i.hom.app (G.inverse.obj X)) - CategoryTheory.Iso.isoInverseComp_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D E} {G : C ā D} (i : G.functor.comp H ā F) (X : D) : i.isoInverseComp.inv.app X = CategoryTheory.CategoryStruct.comp (i.inv.app (G.inverse.obj X)) (H.map (G.counitIso.hom.app X)) - CategoryTheory.Equivalence.congrRightFunctor_map š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (E : Type uā) [CategoryTheory.Category.{vā, uā} E] {e f : C ā D} (α : e ā¶ f) : (CategoryTheory.Equivalence.congrRightFunctor E).map α = CategoryTheory.Equivalence.mkHom ((CategoryTheory.Functor.whiskeringRight E C D).map (CategoryTheory.Equivalence.asNatTrans α)) - CategoryTheory.Functor.inv_fun_map š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) [F.IsEquivalence] (X Y : C) (f : X ā¶ Y) : F.inv.map (F.map f) = CategoryTheory.CategoryStruct.comp (F.asEquivalence.unitInv.app X) (CategoryTheory.CategoryStruct.comp f (F.asEquivalence.unit.app Y)) - CategoryTheory.Iso.compInverseIso_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {G : CategoryTheory.Functor C D} {H : D ā E} (i : F ā G.comp H.functor) (X : C) : i.compInverseIso.hom.app X = CategoryTheory.CategoryStruct.comp (H.inverse.map (i.hom.app X)) (H.unitIso.inv.app (G.obj X)) - CategoryTheory.Iso.compInverseIso_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {G : CategoryTheory.Functor C D} {H : D ā E} (i : F ā G.comp H.functor) (X : C) : i.compInverseIso.inv.app X = CategoryTheory.CategoryStruct.comp (H.unitIso.hom.app (G.obj X)) (H.inverse.map (i.inv.app X)) - CategoryTheory.Iso.isoCompInverse_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {G : CategoryTheory.Functor C D} {H : D ā E} (i : G.comp H.functor ā F) (X : C) : i.isoCompInverse.hom.app X = CategoryTheory.CategoryStruct.comp (H.unitIso.hom.app (G.obj X)) (H.inverse.map (i.hom.app X)) - CategoryTheory.Iso.isoCompInverse_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {E : Type uā} [CategoryTheory.Category.{vā, uā} E] {F : CategoryTheory.Functor C E} {G : CategoryTheory.Functor C D} {H : D ā E} (i : G.comp H.functor ā F) (X : C) : i.isoCompInverse.inv.app X = CategoryTheory.CategoryStruct.comp (H.inverse.map (i.inv.app X)) (H.unitIso.inv.app (G.obj X)) - CategoryTheory.Equivalence.fun_inv_map_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X Y : D) (f : X ā¶ Y) {Z : D} (h : e.functor.obj (e.inverse.obj Y) ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.functor.map (e.inverse.map f)) h = CategoryTheory.CategoryStruct.comp (e.counit.app X) (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (e.counitInv.app Y) h)) - CategoryTheory.Equivalence.inv_fun_map_assoc š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā D) (X Y : C) (f : X ā¶ Y) {Z : C} (h : e.inverse.obj (e.functor.obj Y) ā¶ Z) : CategoryTheory.CategoryStruct.comp (e.inverse.map (e.functor.map f)) h = CategoryTheory.CategoryStruct.comp (e.unitInv.app X) (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (e.unit.app Y) h)) - CategoryTheory.Functor.fun_inv_map š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) [F.IsEquivalence] (X Y : D) (f : X ā¶ Y) : F.map (F.inv.map f) = CategoryTheory.CategoryStruct.comp (F.asEquivalence.counit.app X) (CategoryTheory.CategoryStruct.comp f (F.asEquivalence.counitInv.app Y)) - CategoryTheory.Equivalence.functor_unitIso_comp š Mathlib.CategoryTheory.Equivalence
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] (self : C ā D) (X : C) : CategoryTheory.CategoryStruct.comp (self.functor.map (self.unitIso.hom.app X)) (self.counitIso.hom.app (self.functor.obj X)) = CategoryTheory.CategoryStruct.id (self.functor.obj X) - CategoryTheory.Equivalence.Equivalence_mk'_counit š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unit_iso : CategoryTheory.Functor.id C ā functor.comp inverse) (counit_iso : inverse.comp functor ā CategoryTheory.Functor.id D) (f : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X)) : { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.counit = counit_iso.hom - CategoryTheory.Equivalence.Equivalence_mk'_counitInv š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unit_iso : CategoryTheory.Functor.id C ā functor.comp inverse) (counit_iso : inverse.comp functor ā CategoryTheory.Functor.id D) (f : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X)) : { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.counitInv = counit_iso.inv - CategoryTheory.Equivalence.Equivalence_mk'_unit š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unit_iso : CategoryTheory.Functor.id C ā functor.comp inverse) (counit_iso : inverse.comp functor ā CategoryTheory.Functor.id D) (f : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X)) : { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.unit = unit_iso.hom - CategoryTheory.Equivalence.Equivalence_mk'_unitInv š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unit_iso : CategoryTheory.Functor.id C ā functor.comp inverse) (counit_iso : inverse.comp functor ā CategoryTheory.Functor.id D) (f : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unit_iso.hom.app X)) (counit_iso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X)) : { functor := functor, inverse := inverse, unitIso := unit_iso, counitIso := counit_iso, functor_unitIso_comp := f }.unitInv = unit_iso.inv - CategoryTheory.Equivalence.mk'.sizeOf_spec š Mathlib.CategoryTheory.Equivalence
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] [SizeOf C] [SizeOf D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unitIso : CategoryTheory.Functor.id C ā functor.comp inverse) (counitIso : inverse.comp functor ā CategoryTheory.Functor.id D) (functor_unitIso_comp : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unitIso.hom.app X)) (counitIso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X) := by cat_disch) : sizeOf { functor := functor, inverse := inverse, unitIso := unitIso, counitIso := counitIso, functor_unitIso_comp := functor_unitIso_comp } = 1 + sizeOf functor + sizeOf inverse + sizeOf unitIso + sizeOf counitIso - CategoryTheory.Iso.isoInverseOfIsoFunctor_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {G G' : C ā D} (i : G.functor ā G'.functor) (X : D) : i.isoInverseOfIsoFunctor.hom.app X = CategoryTheory.CategoryStruct.comp (G'.unitIso.hom.app (G.inverse.obj X)) (CategoryTheory.CategoryStruct.comp (G'.inverse.map (i.inv.app (G.inverse.obj X))) (G'.inverse.map (G.counitIso.hom.app X))) - CategoryTheory.Iso.isoInverseOfIsoFunctor_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {G G' : C ā D} (i : G.functor ā G'.functor) (X : D) : i.isoInverseOfIsoFunctor.inv.app X = CategoryTheory.CategoryStruct.comp (G'.inverse.map (G.counitIso.inv.app X)) (CategoryTheory.CategoryStruct.comp (G'.inverse.map (i.hom.app (G.inverse.obj X))) (G'.unitIso.inv.app (G.inverse.obj X))) - CategoryTheory.Iso.isoFunctorOfIsoInverse_hom_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {G G' : C ā D} (i : G.inverse ā G'.inverse) (X : C) : i.isoFunctorOfIsoInverse.hom.app X = CategoryTheory.CategoryStruct.comp (G'.counitIso.inv.app (G.functor.obj X)) (CategoryTheory.CategoryStruct.comp (G'.functor.map (i.inv.app (G.functor.obj X))) (G'.functor.map (G.unitIso.inv.app X))) - CategoryTheory.Iso.isoFunctorOfIsoInverse_inv_app š Mathlib.CategoryTheory.Equivalence
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {G G' : C ā D} (i : G.inverse ā G'.inverse) (X : C) : i.isoFunctorOfIsoInverse.inv.app X = CategoryTheory.CategoryStruct.comp (G'.functor.map (G.unitIso.hom.app X)) (CategoryTheory.CategoryStruct.comp (G'.functor.map (i.hom.app (G.functor.obj X))) (G'.counitIso.hom.app (G.functor.obj X))) - CategoryTheory.Equivalence.mk'.injEq š Mathlib.CategoryTheory.Equivalence
{C : Type uā} {D : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Category.{vā, uā} D] (functor : CategoryTheory.Functor C D) (inverse : CategoryTheory.Functor D C) (unitIso : CategoryTheory.Functor.id C ā functor.comp inverse) (counitIso : inverse.comp functor ā CategoryTheory.Functor.id D) (functor_unitIso_comp : ā (X : C), CategoryTheory.CategoryStruct.comp (functor.map (unitIso.hom.app X)) (counitIso.hom.app (functor.obj X)) = CategoryTheory.CategoryStruct.id (functor.obj X) := by cat_disch) (functorā : CategoryTheory.Functor C D) (inverseā : CategoryTheory.Functor D C) (unitIsoā : CategoryTheory.Functor.id C ā functorā.comp inverseā) (counitIsoā : inverseā.comp functorā ā CategoryTheory.Functor.id D) (functor_unitIso_compā : ā (X : C), CategoryTheory.CategoryStruct.comp (functorā.map (unitIsoā.hom.app X)) (counitIsoā.hom.app (functorā.obj X)) = CategoryTheory.CategoryStruct.id (functorā.obj X) := by cat_disch) : ({ functor := functor, inverse := inverse, unitIso := unitIso, counitIso := counitIso, functor_unitIso_comp := functor_unitIso_comp } = { functor := functorā, inverse := inverseā, unitIso := unitIsoā, counitIso := counitIsoā, functor_unitIso_comp := functor_unitIso_compā }) = (functor = functorā ā§ inverse = inverseā ā§ unitIso ā unitIsoā ā§ counitIso ā counitIsoā) - CategoryTheory.opOp_map š Mathlib.CategoryTheory.Opposites
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] {Xā Yā : C} (f : Xā ā¶ Yā) : (CategoryTheory.opOp C).map f = f.op.op - CategoryTheory.unopUnop_map š Mathlib.CategoryTheory.Opposites
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] {Xā Yā : Cįµįµįµįµ} (f : Xā ā¶ Yā) : (CategoryTheory.unopUnop C).map f = f.unop.unop - CategoryTheory.Functor.op_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C D) {Xā Yā : Cįµįµ} (f : Xā ā¶ Yā) : F.op.map f = (F.map f.unop).op - CategoryTheory.Functor.rightOp_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor Cįµįµ D) {Xā Yā : C} (f : Xā ā¶ Yā) : F.rightOp.map f = (F.map f.op).op - CategoryTheory.Functor.leftOp_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor C Dįµįµ) {Xā Yā : Cįµįµ} (f : Xā ā¶ Yā) : F.leftOp.map f = (F.map f.unop).unop - CategoryTheory.Functor.rightOp_map_unop š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] {F : CategoryTheory.Functor Cįµįµ D} {X Y : C} (f : X ā¶ Y) : (F.rightOp.map f).unop = F.map f.op - CategoryTheory.Functor.unop_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (F : CategoryTheory.Functor Cįµįµ Dįµįµ) {Xā Yā : C} (f : Xā ā¶ Yā) : F.unop.map f = (F.map f.op).unop - CategoryTheory.Functor.leftOpRightOpEquiv_inverse_map š Mathlib.CategoryTheory.Opposites
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] {Xā Yā : CategoryTheory.Functor C Dįµįµ} (Ī· : Xā ā¶ Yā) : (CategoryTheory.Functor.leftOpRightOpEquiv C D).inverse.map Ī· = (CategoryTheory.NatTrans.leftOp Ī·).op - CategoryTheory.Functor.opHom_map_app š Mathlib.CategoryTheory.Opposites
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] {Xā Yā : (CategoryTheory.Functor C D)įµįµ} (α : Xā ā¶ Yā) (X : Cįµįµ) : ((CategoryTheory.Functor.opHom C D).map α).app X = (α.unop.app (Opposite.unop X)).op - CategoryTheory.Functor.opInv_map š Mathlib.CategoryTheory.Opposites
(C : Type uā) [CategoryTheory.Category.{vā, uā} C] (D : Type uā) [CategoryTheory.Category.{vā, uā} D] {Xā Yā : CategoryTheory.Functor Cįµįµ Dįµįµ} (α : Xā ā¶ Yā) : (CategoryTheory.Functor.opInv C D).map α = Quiver.Hom.op { app := fun X => (α.app (Opposite.op X)).unop, naturality := ⯠} - CategoryTheory.Equivalence.leftOp_inverse_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā Dįµįµ) {Xā Yā : D} (f : Xā ā¶ Yā) : e.leftOp.inverse.map f = (e.inverse.map f.op).op - CategoryTheory.Equivalence.leftOp_functor_map š Mathlib.CategoryTheory.Opposites
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {D : Type uā} [CategoryTheory.Category.{vā, uā} D] (e : C ā Dįµįµ) {Xā Yā : Cįµįµ} (f : Xā ā¶ Yā) : e.leftOp.functor.map f = (e.functor.map f.unop).unop
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65