Loogle!
Result
Found 597 declarations mentioning Prefunctor.map. Of these, only the first 200 are shown.
- Prefunctor.id_map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
(V : Type u_1) [Quiver V] {X✝ Y✝ : V} (f : X✝ ⟶ Y✝) : (𝟭q V).map f = f - Prefunctor.map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type u₁} [Quiver V] {W : Type u₂} [Quiver W] (self : V ⥤q W) {X Y : V} : (X ⟶ Y) → (self.obj X ⟶ self.obj Y) - Prefunctor.congr_map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ⥤q V) {X Y : U} {f g : X ⟶ Y} (h : f = g) : F.map f = F.map g - Prefunctor.mk_map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] {obj : V → W} {map : {X Y : V} → (X ⟶ Y) → (obj X ⟶ obj Y)} {X Y : V} {f : X ⟶ Y} : { obj := obj, map := map }.map f = map f - Prefunctor.comp_map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} [Quiver U] {V : Type u_2} [Quiver V] {W : Type u_3} [Quiver W] (F : U ⥤q V) (G : V ⥤q W) {X✝ Y✝ : U} (f : X✝ ⟶ Y✝) : (F ⋙q G).map f = G.map (F.map f) - Prefunctor.congr_hom 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] {F G : U ⥤q V} (e : F = G) {X Y : U} (f : X ⟶ Y) : Quiver.homOfEq (F.map f) ⋯ ⋯ = G.map f - Prefunctor.homOfEq_map 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ⥤q V) {X Y : U} (f : X ⟶ Y) {X' Y' : U} (hX : X = X') (hY : Y = Y') : F.map (Quiver.homOfEq f hX hY) = Quiver.homOfEq (F.map f) ⋯ ⋯ - Prefunctor.ext' 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{V W : Type u} [Quiver V] [Quiver W] {F G : V ⥤q W} (h_obj : ∀ (X : V), F.obj X = G.obj X) (h_map : ∀ (X Y : V) (f : X ⟶ Y), F.map f = Quiver.homOfEq (G.map f) ⋯ ⋯) : F = G - Prefunctor.ext 📋 Mathlib.Combinatorics.Quiver.Prefunctor
{V : Type u} [Quiver V] {W : Type u₂} [Quiver W] {F G : V ⥤q W} (h_obj : ∀ (X : V), F.obj X = G.obj X) (h_map : ∀ (X Y : V) (f : X ⟶ Y), F.map f = Eq.recOn ⋯ (Eq.recOn ⋯ (G.map f))) : F = G - CategoryTheory.Functor.toPrefunctor_map 📋 Mathlib.CategoryTheory.Functor.Basic
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X Y : C} (a✝ : X ⟶ Y) : F.toPrefunctor.map a✝ = F.map a✝ - Prefunctor.mapPath_toPath 📋 Mathlib.Combinatorics.Quiver.Path
{V : Type u₁} [Quiver V] {W : Type u₂} [Quiver W] (F : V ⥤q W) {a b : V} (f : a ⟶ b) : F.mapPath f.toPath = (F.map f).toPath - Prefunctor.mapPath_cons 📋 Mathlib.Combinatorics.Quiver.Path
{V : Type u₁} [Quiver V] {W : Type u₂} [Quiver W] (F : V ⥤q W) {a b c : V} (p : Quiver.Path a b) (e : b ⟶ c) : F.mapPath (p.cons e) = (F.mapPath p).cons (F.map e) - Quiver.Symmetrify.of_map 📋 Mathlib.Combinatorics.Quiver.Symmetric
{V : Type u_2} [Quiver V] {X✝ Y✝ : V} (val : X✝ ⟶ Y✝) : Quiver.Symmetrify.of.map val = Sum.inl val - Prefunctor.map_reverse 📋 Mathlib.Combinatorics.Quiver.Symmetric
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] [Quiver.HasReverse U] [Quiver.HasReverse V] (φ : U ⥤q V) [φ.MapReverse] {u v : U} (e : u ⟶ v) : φ.map (Quiver.reverse e) = Quiver.reverse (φ.map e) - Prefunctor.MapReverse.map_reverse' 📋 Mathlib.Combinatorics.Quiver.Symmetric
{U : Type u_1} {V : Type u_2} {inst✝ : Quiver U} {inst✝¹ : Quiver V} {inst✝² : Quiver.HasReverse U} {inst✝³ : Quiver.HasReverse V} {φ : U ⥤q V} [self : φ.MapReverse] {u v : U} (e : u ⟶ v) : φ.map (Quiver.reverse e) = Quiver.reverse (φ.map e) - Prefunctor.MapReverse.mk 📋 Mathlib.Combinatorics.Quiver.Symmetric
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] [Quiver.HasReverse U] [Quiver.HasReverse V] {φ : U ⥤q V} (map_reverse' : ∀ {u v : U} (e : u ⟶ v), φ.map (Quiver.reverse e) = Quiver.reverse (φ.map e)) : φ.MapReverse - Prefunctor.symmetrify_map 📋 Mathlib.Combinatorics.Quiver.Symmetric
{U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (φ : U ⥤q V) {X✝ Y✝ : Quiver.Symmetrify U} (a✝ : (X✝ ⟶ Y✝) ⊕ (Y✝ ⟶ X✝)) : φ.symmetrify.map a✝ = Sum.map φ.map φ.map a✝ - Quiver.Symmetrify.lift_unique 📋 Mathlib.Combinatorics.Quiver.Symmetric
{V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [Quiver.HasReverse V'] (φ : V ⥤q V') (Φ : Quiver.Symmetrify V ⥤q V') (hΦ : Quiver.Symmetrify.of ⋙q Φ = φ) (hΦinv : ∀ {X Y : Quiver.Symmetrify V} (f : X ⟶ Y), Φ.map (Quiver.reverse f) = Quiver.reverse (Φ.map f)) : Φ = Quiver.Symmetrify.lift φ - Quiver.Symmetrify.lift_reverse 📋 Mathlib.Combinatorics.Quiver.Symmetric
{V : Type u_2} [Quiver V] {V' : Type u_4} [Quiver V'] [h : Quiver.HasInvolutiveReverse V'] (φ : V ⥤q V') {X Y : Quiver.Symmetrify V} (f : X ⟶ Y) : (Quiver.Symmetrify.lift φ).map (Quiver.reverse f) = Quiver.reverse ((Quiver.Symmetrify.lift φ).map f) - Quiver.Push.of_reverse 📋 Mathlib.Combinatorics.Quiver.Symmetric
{V : Type u_2} [Quiver V] {V' : Type u_4} (σ : V → V') [Quiver.HasInvolutiveReverse V] (X Y : V) (f : X ⟶ Y) : Quiver.reverse ((Quiver.Push.of σ).map f) = (Quiver.Push.of σ).map (Quiver.reverse f) - CategoryTheory.PrelaxFunctorStruct.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] (toPrefunctor : B ⥤q C) (map₂ : {a b : B} → {f g : a ⟶ b} → (f ⟶ g) → (toPrefunctor.map f ⟶ toPrefunctor.map g)) : CategoryTheory.PrelaxFunctorStruct B C - CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_toPrefunctor_map 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] (F : B → C) (F' : (a b : B) → (a ⟶ b) ⥤q (F a ⟶ F b)) {a b : B} (a✝ : a ⟶ b) : (CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors F F').map a✝ = (F' a b).obj a✝ - CategoryTheory.PrelaxFunctorStruct.map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] (self : CategoryTheory.PrelaxFunctorStruct B C) {a b : B} {f g : a ⟶ b} : (f ⟶ g) → (self.map f ⟶ self.map g) - CategoryTheory.PrelaxFunctorStruct.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] [SizeOf B] [SizeOf C] (toPrefunctor : B ⥤q C) (map₂ : {a b : B} → {f g : a ⟶ b} → (f ⟶ g) → (toPrefunctor.map f ⟶ toPrefunctor.map g)) : sizeOf { toPrefunctor := toPrefunctor, map₂ := map₂ } = 1 + sizeOf toPrefunctor - CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors_map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] (F : B → C) (F' : (a b : B) → (a ⟶ b) ⥤q (F a ⟶ F b)) {a b : B} {f✝ g✝ : a ⟶ b} (a✝ : f✝ ⟶ g✝) : (CategoryTheory.PrelaxFunctorStruct.mkOfHomPrefunctors F F').map₂ a✝ = (F' a b).map a✝ - CategoryTheory.PrelaxFunctorStruct.comp_map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] {D : Type u₃} [Quiver D] [(a b : D) → Quiver (a ⟶ b)] (F : CategoryTheory.PrelaxFunctorStruct B C) (G : CategoryTheory.PrelaxFunctorStruct C D) {a✝ b✝ : B} {f✝ g✝ : a✝ ⟶ b✝} (η : f✝ ⟶ g✝) : (F.comp G).map₂ η = G.map₂ (F.map₂ η) - CategoryTheory.PrelaxFunctorStruct.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [Quiver B] [(a b : B) → Quiver (a ⟶ b)] {C : Type u₂} [Quiver C] [(a b : C) → Quiver (a ⟶ b)] (toPrefunctor : B ⥤q C) (map₂ : {a b : B} → {f g : a ⟶ b} → (f ⟶ g) → (toPrefunctor.map f ⟶ toPrefunctor.map g)) (toPrefunctor✝ : B ⥤q C) (map₂✝ : {a b : B} → {f g : a ⟶ b} → (f ⟶ g) → (toPrefunctor✝.map f ⟶ toPrefunctor✝.map g)) : ({ toPrefunctor := toPrefunctor, map₂ := map₂ } = { toPrefunctor := toPrefunctor✝, map₂ := map₂✝ }) = (toPrefunctor = toPrefunctor✝ ∧ map₂ ≍ map₂✝) - CategoryTheory.PrelaxFunctor.map₂Iso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) : F.map f ≅ F.map g - CategoryTheory.PrelaxFunctor.mapFunctor_obj 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) (a b : B) (f : a ⟶ b) : (F.mapFunctor a b).obj f = F.map f - CategoryTheory.PrelaxFunctor.map₂_isIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] : CategoryTheory.IsIso (F.map₂ η) - CategoryTheory.PrelaxFunctor.mapFunctor_map 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) (a b : B) {X✝ Y✝ : a ⟶ b} (η : X✝ ⟶ Y✝) : (F.mapFunctor a b).map η = F.map₂ η - CategoryTheory.PrelaxFunctor.map₂_id 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.PrelaxFunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (self.map f) - CategoryTheory.PrelaxFunctor.map₂_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] : F.map₂ (CategoryTheory.inv η) = CategoryTheory.inv (F.map₂ η) - CategoryTheory.PrelaxFunctor.map₂Iso_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) : (F.map₂Iso η).hom = F.map₂ η.hom - CategoryTheory.PrelaxFunctor.map₂Iso_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) : (F.map₂Iso η).inv = F.map₂ η.inv - CategoryTheory.PrelaxFunctor.map₂_comp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h) : self.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (self.map₂ η) (self.map₂ θ) - CategoryTheory.PrelaxFunctor.map₂_hom_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) : CategoryTheory.CategoryStruct.comp (F.map₂ η.hom) (F.map₂ η.inv) = CategoryTheory.CategoryStruct.id (F.map f) - CategoryTheory.PrelaxFunctor.map₂_inv_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) : CategoryTheory.CategoryStruct.comp (F.map₂ η.inv) (F.map₂ η.hom) = CategoryTheory.CategoryStruct.id (F.map g) - CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] : CategoryTheory.CategoryStruct.comp (F.map₂ η) (F.map₂ (CategoryTheory.inv η)) = CategoryTheory.CategoryStruct.id (F.map f) - CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] : CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.inv η)) (F.map₂ η) = CategoryTheory.CategoryStruct.id (F.map g) - CategoryTheory.PrelaxFunctor.map₂Iso_eqToIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {x y : B} (f g : x ⟶ y) (hfg : f = g) : F.map₂Iso (CategoryTheory.eqToIso hfg) = CategoryTheory.eqToIso ⋯ - CategoryTheory.PrelaxFunctor.map₂_hom_inv_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) {Z : F.obj a ⟶ F.obj b} (h : F.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map₂ η.hom) (CategoryTheory.CategoryStruct.comp (F.map₂ η.inv) h) = h - CategoryTheory.PrelaxFunctor.map₂_inv_hom_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ≅ g) {Z : F.obj a ⟶ F.obj b} (h : F.map g ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map₂ η.inv) (CategoryTheory.CategoryStruct.comp (F.map₂ η.hom) h) = h - CategoryTheory.PrelaxFunctor.map₂_hom_inv_isIso_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] {Z : F.obj a ⟶ F.obj b} (h : F.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map₂ η) (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.inv η)) h) = h - CategoryTheory.PrelaxFunctor.map₂_inv_hom_isIso_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g : a ⟶ b} (η : f ⟶ g) [CategoryTheory.IsIso η] {Z : F.obj a ⟶ F.obj b} (h : F.map g ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.inv η)) (CategoryTheory.CategoryStruct.comp (F.map₂ η) h) = h - CategoryTheory.PrelaxFunctor.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctorStruct : CategoryTheory.PrelaxFunctorStruct B C) (map₂_id : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (toPrelaxFunctorStruct.map f) := by aesop) (map₂_comp : ∀ {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (toPrelaxFunctorStruct.map₂ η) (toPrelaxFunctorStruct.map₂ θ) := by cat_disch) : CategoryTheory.PrelaxFunctor B C - CategoryTheory.PrelaxFunctor.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] [SizeOf B] [SizeOf C] (toPrelaxFunctorStruct : CategoryTheory.PrelaxFunctorStruct B C) (map₂_id : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (toPrelaxFunctorStruct.map f) := by aesop) (map₂_comp : ∀ {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (toPrelaxFunctorStruct.map₂ η) (toPrelaxFunctorStruct.map₂ θ) := by cat_disch) : sizeOf { toPrelaxFunctorStruct := toPrelaxFunctorStruct, map₂_id := map₂_id, map₂_comp := map₂_comp } = 1 + sizeOf toPrelaxFunctorStruct - CategoryTheory.PrelaxFunctor.map₂_eqToHom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.PrelaxFunctor B C) {x y : B} (f g : x ⟶ y) (hfg : f = g) : F.map₂ (CategoryTheory.eqToHom hfg) = CategoryTheory.eqToHom ⋯ - CategoryTheory.PrelaxFunctor.map₂_comp_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.PrelaxFunctor B C) {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h) {Z : self.obj a ⟶ self.obj b} (h✝ : self.map h ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.CategoryStruct.comp η θ)) h✝ = CategoryTheory.CategoryStruct.comp (self.map₂ η) (CategoryTheory.CategoryStruct.comp (self.map₂ θ) h✝) - CategoryTheory.PrelaxFunctor.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Prelax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctorStruct : CategoryTheory.PrelaxFunctorStruct B C) (map₂_id : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (toPrelaxFunctorStruct.map f) := by aesop) (map₂_comp : ∀ {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h), toPrelaxFunctorStruct.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (toPrelaxFunctorStruct.map₂ η) (toPrelaxFunctorStruct.map₂ θ) := by cat_disch) (toPrelaxFunctorStruct✝ : CategoryTheory.PrelaxFunctorStruct B C) (map₂_id✝ : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctorStruct✝.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (toPrelaxFunctorStruct✝.map f) := by aesop) (map₂_comp✝ : ∀ {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h), toPrelaxFunctorStruct✝.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (toPrelaxFunctorStruct✝.map₂ η) (toPrelaxFunctorStruct✝.map₂ θ) := by cat_disch) : ({ toPrelaxFunctorStruct := toPrelaxFunctorStruct, map₂_id := map₂_id, map₂_comp := map₂_comp } = { toPrelaxFunctorStruct := toPrelaxFunctorStruct✝, map₂_id := map₂_id✝, map₂_comp := map₂_comp✝ }) = (toPrelaxFunctorStruct = toPrelaxFunctorStruct✝) - CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) (a : B) : F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a) - CategoryTheory.OplaxFunctor.mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) (a : B) : self.map (CategoryTheory.CategoryStruct.id a) ⟶ CategoryTheory.CategoryStruct.id (self.obj a) - CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g) - CategoryTheory.OplaxFunctor.mapId' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b := by cat_disch) : F.map f ⟶ CategoryTheory.CategoryStruct.id (F.obj b) - CategoryTheory.OplaxFunctor.mapId'_eq_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) (b : B) : F.mapId' (CategoryTheory.CategoryStruct.id b) ⋯ = F.mapId b - CategoryTheory.OplaxFunctor.mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : self.map (CategoryTheory.CategoryStruct.comp f g) ⟶ CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) - CategoryTheory.OplaxFunctor.mapComp' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg := by cat_disch) : F.map fg ⟶ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g) - CategoryTheory.OplaxFunctor.mapComp'_eq_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) : F.mapComp' f g (CategoryTheory.CategoryStruct.comp f g) ⋯ = F.mapComp f g - CategoryTheory.OplaxFunctor.PseudoCore.mapIdIso_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) {a : B} : (self.mapIdIso a).hom = F.mapId a - CategoryTheory.OplaxFunctor.mapId'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b) : F.mapId' f hf = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.eqToHom ⋯)) (F.mapId b) - CategoryTheory.OplaxFunctor.PseudoCore.mapCompIso_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (self : F.PseudoCore) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : (self.mapCompIso f g).hom = F.mapComp f g - CategoryTheory.OplaxFunctor.mapComp'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg) : F.mapComp' f g fg h = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.eqToHom ⋯)) (F.mapComp f g) - CategoryTheory.OplaxFunctor.mapComp_naturality_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (self.mapComp f' g) = CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map g)) - CategoryTheory.OplaxFunctor.mapComp_naturality_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (self.mapComp f g') = CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) - CategoryTheory.OplaxFunctor.PseudoCore.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_hom : ∀ {a : B}, (mapIdIso a).hom = F.mapId a := by cat_disch) (mapCompIso_hom : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).hom = F.mapComp f g := by cat_disch) : F.PseudoCore - CategoryTheory.OplaxFunctor.PseudoCore.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} [SizeOf B] [SizeOf C] (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_hom : ∀ {a : B}, (mapIdIso a).hom = F.mapId a := by cat_disch) (mapCompIso_hom : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).hom = F.mapComp f g := by cat_disch) : sizeOf { mapIdIso := mapIdIso, mapCompIso := mapCompIso, mapIdIso_hom := mapIdIso_hom, mapCompIso_hom := mapCompIso_hom } = 1 - CategoryTheory.OplaxFunctor.map₂_leftUnitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapId a) (self.map f)) (CategoryTheory.Bicategory.leftUnitor (self.map f)).hom) - CategoryTheory.OplaxFunctor.map₂_rightUnitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapId b)) (CategoryTheory.Bicategory.rightUnitor (self.map f)).hom) - CategoryTheory.OplaxFunctor.mapComp_id_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.Bicategory.whiskerRight (F.mapId a) (F.map f)) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) (CategoryTheory.Bicategory.leftUnitor (F.map f)).inv - CategoryTheory.OplaxFunctor.mapComp_id_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b)) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) (CategoryTheory.Bicategory.rightUnitor (F.map f)).inv - CategoryTheory.OplaxFunctor.map₂_rightUnitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom).app X = CategoryTheory.CategoryStruct.comp ((self.mapComp f (CategoryTheory.CategoryStruct.id b)).app X) ((self.mapId b).app ((self.map f).obj X)) - CategoryTheory.OplaxFunctor.map₂_leftUnitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom).app X = CategoryTheory.CategoryStruct.comp ((self.mapComp (CategoryTheory.CategoryStruct.id a) f).app X) ((self.map f).map ((self.mapId a).app X)) - CategoryTheory.OplaxFunctor.mapComp_naturality_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) {Z : self.obj a ⟶ self.obj c} (h : CategoryTheory.CategoryStruct.comp (self.map f') (self.map g) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (CategoryTheory.CategoryStruct.comp (self.mapComp f' g) h) = CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map g)) h) - CategoryTheory.OplaxFunctor.mapComp_naturality_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') {Z : self.obj a ⟶ self.obj c} (h : CategoryTheory.CategoryStruct.comp (self.map f) (self.map g') ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (CategoryTheory.CategoryStruct.comp (self.mapComp f g') h) = CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) h) - CategoryTheory.OplaxFunctor.map₂_leftUnitor_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : self.obj a ⟶ self.obj b} (h : self.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) h = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapId a) (self.map f)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (self.map f)).hom h)) - CategoryTheory.OplaxFunctor.map₂_rightUnitor_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : self.obj a ⟶ self.obj b} (h : self.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) h = CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapId b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (self.map f)).hom h)) - CategoryTheory.OplaxFunctor.mapComp_id_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : F.obj a ⟶ F.obj b} (h : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id (F.obj a)) (F.map f) ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapId a) (F.map f)) h) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (F.map f)).inv h) - CategoryTheory.OplaxFunctor.mapComp_id_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : F.obj a ⟶ F.obj b} (h : CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.id (F.obj b)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b)) h) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).inv h) - CategoryTheory.OplaxFunctor.mapComp_naturality_right_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)).app X) ((self.mapComp f g').app X) = CategoryTheory.CategoryStruct.comp ((self.mapComp f g).app X) ((self.map₂ η).app ((self.map f).obj X)) - CategoryTheory.OplaxFunctor.mapComp_naturality_left_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)).app X) ((self.mapComp f' g).app X) = CategoryTheory.CategoryStruct.comp ((self.mapComp f g).app X) ((self.map g).map ((self.map₂ η).app X)) - CategoryTheory.OplaxFunctor.PseudoCore.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.OplaxFunctor B C} (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_hom : ∀ {a : B}, (mapIdIso a).hom = F.mapId a := by cat_disch) (mapCompIso_hom : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).hom = F.mapComp f g := by cat_disch) (mapIdIso✝ : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso✝ : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_hom✝ : ∀ {a : B}, (mapIdIso✝ a).hom = F.mapId a := by cat_disch) (mapCompIso_hom✝ : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso✝ f g).hom = F.mapComp f g := by cat_disch) : ({ mapIdIso := mapIdIso, mapCompIso := mapCompIso, mapIdIso_hom := mapIdIso_hom, mapCompIso_hom := mapCompIso_hom } = { mapIdIso := mapIdIso✝, mapCompIso := mapCompIso✝, mapIdIso_hom := mapIdIso_hom✝, mapCompIso_hom := mapCompIso_hom✝ }) = (mapIdIso = mapIdIso✝ ∧ mapCompIso = mapCompIso✝) - CategoryTheory.OplaxFunctor.mapComp_assoc_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).inv)) - CategoryTheory.OplaxFunctor.mapComp_assoc_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).inv) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).hom)) - CategoryTheory.OplaxFunctor.map₂_associator 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapComp g h))) = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapComp f g) (self.map h)) (CategoryTheory.Bicategory.associator (self.map f) (self.map g) (self.map h)).hom) - CategoryTheory.OplaxFunctor.mapComp_assoc_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : F.obj a ⟶ F.obj d} (h✝ : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (F.map h) ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) h✝) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).inv h✝))) - CategoryTheory.OplaxFunctor.mapComp_assoc_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : F.obj a ⟶ F.obj d} (h✝ : CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.comp (F.map g) (F.map h)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) h✝) = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).inv) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).hom h✝))) - CategoryTheory.OplaxFunctor.map₂_associator_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.OplaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : self.obj a ⟶ self.obj d} (h✝ : CategoryTheory.CategoryStruct.comp (self.map f) (CategoryTheory.CategoryStruct.comp (self.map g) (self.map h)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapComp g h)) h✝)) = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapComp f g) (self.map h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (self.map f) (self.map g) (self.map h)).hom h✝)) - CategoryTheory.OplaxFunctor.mapComp_assoc_left_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.comp ((F.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) ((F.map h).map ((F.mapComp f g).app X)) = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.associator f g h).hom).app X) (CategoryTheory.CategoryStruct.comp ((F.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) ((F.mapComp g h).app ((F.map f).obj X))) - CategoryTheory.OplaxFunctor.mapComp_assoc_right_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.comp ((F.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) ((F.mapComp g h).app ((F.map f).obj X)) = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.associator f g h).inv).app X) (CategoryTheory.CategoryStruct.comp ((F.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) ((F.map h).map ((F.mapComp f g).app X))) - CategoryTheory.OplaxFunctor.map₂_associator_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.OplaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.map₂ (CategoryTheory.Bicategory.associator f g h).hom).app X) (CategoryTheory.CategoryStruct.comp ((self.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) ((self.mapComp g h).app ((self.map f).obj X))) = CategoryTheory.CategoryStruct.comp ((self.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) ((self.map h).map ((self.mapComp f g).app X)) - CategoryTheory.OplaxFunctor.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a) ⟶ CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g) ⟶ CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (mapComp f' g) = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (mapComp f g') = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h))) = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) : CategoryTheory.OplaxFunctor B C - CategoryTheory.OplaxFunctor.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] [SizeOf B] [SizeOf C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a) ⟶ CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g) ⟶ CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (mapComp f' g) = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (mapComp f g') = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h))) = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) : sizeOf { toPrelaxFunctor := toPrelaxFunctor, mapId := mapId, mapComp := mapComp, mapComp_naturality_left := mapComp_naturality_left, mapComp_naturality_right := mapComp_naturality_right, map₂_associator := map₂_associator, map₂_leftUnitor := map₂_leftUnitor, map₂_rightUnitor := map₂_rightUnitor } = 1 + sizeOf toPrelaxFunctor - CategoryTheory.OplaxFunctor.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Oplax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a) ⟶ CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g) ⟶ CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (mapComp f' g) = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (mapComp f g') = CategoryTheory.CategoryStruct.comp (mapComp f g) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h))) = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).hom) := by cat_disch) (toPrelaxFunctor✝ : CategoryTheory.PrelaxFunctor B C) (mapId✝ : (a : B) → toPrelaxFunctor✝.map (CategoryTheory.CategoryStruct.id a) ⟶ CategoryTheory.CategoryStruct.id (toPrelaxFunctor✝.obj a)) (mapComp✝ : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → toPrelaxFunctor✝.map (CategoryTheory.CategoryStruct.comp f g) ⟶ CategoryTheory.CategoryStruct.comp (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map g)) (mapComp_naturality_left✝ : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) (mapComp✝ f' g) = CategoryTheory.CategoryStruct.comp (mapComp✝ f g) (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor✝.map₂ η) (toPrelaxFunctor✝.map g)) := by cat_disch) (mapComp_naturality_right✝ : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) (mapComp✝ f g') = CategoryTheory.CategoryStruct.comp (mapComp✝ f g) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map₂ η)) := by cat_disch) (map₂_associator✝ : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.associator f g h).hom) (CategoryTheory.CategoryStruct.comp (mapComp✝ f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (mapComp✝ g h))) = CategoryTheory.CategoryStruct.comp (mapComp✝ (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp✝ f g) (toPrelaxFunctor✝.map h)) (CategoryTheory.Bicategory.associator (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map g) (toPrelaxFunctor✝.map h)).hom) := by cat_disch) (map₂_leftUnitor✝ : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp✝ (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId✝ a) (toPrelaxFunctor✝.map f)) (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor✝.map f)).hom) := by cat_disch) (map₂_rightUnitor✝ : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (mapComp✝ f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (mapId✝ b)) (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor✝.map f)).hom) := by cat_disch) : ({ toPrelaxFunctor := toPrelaxFunctor, mapId := mapId, mapComp := mapComp, mapComp_naturality_left := mapComp_naturality_left, mapComp_naturality_right := mapComp_naturality_right, map₂_associator := map₂_associator, map₂_leftUnitor := map₂_leftUnitor, map₂_rightUnitor := map₂_rightUnitor } = { toPrelaxFunctor := toPrelaxFunctor✝, mapId := mapId✝, mapComp := mapComp✝, mapComp_naturality_left := mapComp_naturality_left✝, mapComp_naturality_right := mapComp_naturality_right✝, map₂_associator := map₂_associator✝, map₂_leftUnitor := map₂_leftUnitor✝, map₂_rightUnitor := map₂_rightUnitor✝ }) = (toPrelaxFunctor = toPrelaxFunctor✝ ∧ mapId ≍ mapId✝ ∧ mapComp ≍ mapComp✝) - CategoryTheory.LaxFunctor.PseudoCore.mapIdIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (self : F.PseudoCore) (a : B) : F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a) - CategoryTheory.LaxFunctor.mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) (a : B) : CategoryTheory.CategoryStruct.id (self.obj a) ⟶ self.map (CategoryTheory.CategoryStruct.id a) - CategoryTheory.LaxFunctor.PseudoCore.mapCompIso 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (self : F.PseudoCore) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g) - CategoryTheory.LaxFunctor.mapId' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b := by cat_disch) : CategoryTheory.CategoryStruct.id (F.obj b) ⟶ F.map f - CategoryTheory.LaxFunctor.mapId'_eq_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) (b : B) : F.mapId' (CategoryTheory.CategoryStruct.id b) ⋯ = F.mapId b - CategoryTheory.LaxFunctor.mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) ⟶ self.map (CategoryTheory.CategoryStruct.comp f g) - CategoryTheory.LaxFunctor.mapComp' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg := by cat_disch) : CategoryTheory.CategoryStruct.comp (F.map f) (F.map g) ⟶ F.map fg - CategoryTheory.LaxFunctor.mapComp'_eq_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) : F.mapComp' f g (CategoryTheory.CategoryStruct.comp f g) ⋯ = F.mapComp f g - CategoryTheory.LaxFunctor.PseudoCore.mapIdIso_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (self : F.PseudoCore) {a : B} : (self.mapIdIso a).inv = F.mapId a - CategoryTheory.LaxFunctor.mapId'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b) : F.mapId' f hf = CategoryTheory.CategoryStruct.comp (F.mapId b) (F.map₂ (CategoryTheory.eqToHom ⋯)) - CategoryTheory.LaxFunctor.PseudoCore.mapCompIso_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (self : F.PseudoCore) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : (self.mapCompIso f g).inv = F.mapComp f g - CategoryTheory.LaxFunctor.comp_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {D : Type u₃} [CategoryTheory.Bicategory D] (F : CategoryTheory.LaxFunctor B C) (G : CategoryTheory.LaxFunctor C D) (a : B) : (F.comp G).mapId a = CategoryTheory.CategoryStruct.comp (G.mapId (F.obj a)) (G.map₂ (F.mapId a)) - CategoryTheory.LaxFunctor.mapComp'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg) : F.mapComp' f g fg h = CategoryTheory.CategoryStruct.comp (F.mapComp f g) (F.map₂ (CategoryTheory.eqToHom ⋯)) - CategoryTheory.LaxFunctor.comp_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {D : Type u₃} [CategoryTheory.Bicategory D] (F : CategoryTheory.LaxFunctor B C) (G : CategoryTheory.LaxFunctor C D) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : (F.comp G).mapComp f g = CategoryTheory.CategoryStruct.comp (G.mapComp (F.map f) (F.map g)) (G.map₂ (F.mapComp f g)) - CategoryTheory.LaxFunctor.mapComp_naturality_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) : CategoryTheory.CategoryStruct.comp (self.mapComp f g) (self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map g)) (self.mapComp f' g) - CategoryTheory.LaxFunctor.mapComp_naturality_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') : CategoryTheory.CategoryStruct.comp (self.mapComp f g) (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) (self.mapComp f g') - CategoryTheory.LaxFunctor.PseudoCore.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_inv : ∀ {a : B}, (mapIdIso a).inv = F.mapId a := by cat_disch) (mapCompIso_inv : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).inv = F.mapComp f g := by cat_disch) : F.PseudoCore - CategoryTheory.LaxFunctor.PseudoCore.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} [SizeOf B] [SizeOf C] (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_inv : ∀ {a : B}, (mapIdIso a).inv = F.mapId a := by cat_disch) (mapCompIso_inv : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).inv = F.mapComp f g := by cat_disch) : sizeOf { mapIdIso := mapIdIso, mapCompIso := mapCompIso, mapIdIso_inv := mapIdIso_inv, mapCompIso_inv := mapCompIso_inv } = 1 - CategoryTheory.LaxFunctor.map₂_leftUnitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (self.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapId a) (self.map f)) (self.mapComp (CategoryTheory.CategoryStruct.id a) f)) - CategoryTheory.LaxFunctor.map₂_rightUnitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (self.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapId b)) (self.mapComp f (CategoryTheory.CategoryStruct.id b))) - CategoryTheory.LaxFunctor.map₂_leftUnitor_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) : (CategoryTheory.Bicategory.leftUnitor (F.map f)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapId a) (F.map f)) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.id a) f) (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom)) - CategoryTheory.LaxFunctor.map₂_rightUnitor_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) : (CategoryTheory.Bicategory.rightUnitor (F.map f)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b)) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)) (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom)) - CategoryTheory.LaxFunctor.map₂_rightUnitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv).app X = CategoryTheory.CategoryStruct.comp ((self.mapId b).app ((self.map f).obj X)) ((self.mapComp f (CategoryTheory.CategoryStruct.id b)).app X) - CategoryTheory.LaxFunctor.mapComp_naturality_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) {Z : self.obj a ⟶ self.obj c} (h : self.map (CategoryTheory.CategoryStruct.comp f' g) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map g)) (CategoryTheory.CategoryStruct.comp (self.mapComp f' g) h) - CategoryTheory.LaxFunctor.mapComp_naturality_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') {Z : self.obj a ⟶ self.obj c} (h : self.map (CategoryTheory.CategoryStruct.comp f g') ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.mapComp f g) (CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) (CategoryTheory.CategoryStruct.comp (self.mapComp f g') h) - CategoryTheory.LaxFunctor.map₂_leftUnitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv).app X = CategoryTheory.CategoryStruct.comp ((self.map f).map ((self.mapId a).app X)) ((self.mapComp (CategoryTheory.CategoryStruct.id a) f).app X) - CategoryTheory.LaxFunctor.map₂_leftUnitor_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : self.obj a ⟶ self.obj b} (h : self.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id a) f) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (self.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapId a) (self.map f)) (CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.id a) f) h)) - CategoryTheory.LaxFunctor.map₂_rightUnitor_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : self.obj a ⟶ self.obj b} (h : self.map (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.id b)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (self.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapId b)) (CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.id b)) h)) - CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : F.obj a ⟶ F.obj b} (h : F.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (F.map f)).hom h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapId a) (F.map f)) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.id a) f) (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) h)) - CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b : B} (f : a ⟶ b) {Z : F.obj a ⟶ F.obj b} (h : F.map f ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).hom h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b)) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)) (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) h)) - CategoryTheory.LaxFunctor.mapComp_naturality_right_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.mapComp f g).app X) ((self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)).app X) = CategoryTheory.CategoryStruct.comp ((self.map₂ η).app ((self.map f).obj X)) ((self.mapComp f g').app X) - CategoryTheory.LaxFunctor.map₂_rightUnitor_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.id ((CategoryTheory.CategoryStruct.id (F.obj b)).obj ((F.map f).obj X)) = CategoryTheory.CategoryStruct.comp ((F.mapId b).app ((F.map f).obj X)) (CategoryTheory.CategoryStruct.comp ((F.mapComp f (CategoryTheory.CategoryStruct.id b)).app X) ((F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom).app X)) - CategoryTheory.LaxFunctor.mapComp_naturality_left_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.mapComp f g).app X) ((self.map₂ (CategoryTheory.Bicategory.whiskerRight η g)).app X) = CategoryTheory.CategoryStruct.comp ((self.map g).map ((self.map₂ η).app X)) ((self.mapComp f' g).app X) - CategoryTheory.LaxFunctor.map₂_leftUnitor_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.id ((F.map f).obj ((CategoryTheory.CategoryStruct.id (F.obj a)).obj X)) = CategoryTheory.CategoryStruct.comp ((F.map f).map ((F.mapId a).app X)) (CategoryTheory.CategoryStruct.comp ((F.mapComp (CategoryTheory.CategoryStruct.id a) f).app X) ((F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom).app X)) - CategoryTheory.LaxFunctor.PseudoCore.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F : CategoryTheory.LaxFunctor B C} (mapIdIso : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_inv : ∀ {a : B}, (mapIdIso a).inv = F.mapId a := by cat_disch) (mapCompIso_inv : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso f g).inv = F.mapComp f g := by cat_disch) (mapIdIso✝ : (a : B) → F.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (F.obj a)) (mapCompIso✝ : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → F.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g)) (mapIdIso_inv✝ : ∀ {a : B}, (mapIdIso✝ a).inv = F.mapId a := by cat_disch) (mapCompIso_inv✝ : ∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), (mapCompIso✝ f g).inv = F.mapComp f g := by cat_disch) : ({ mapIdIso := mapIdIso, mapCompIso := mapCompIso, mapIdIso_inv := mapIdIso_inv, mapCompIso_inv := mapCompIso_inv } = { mapIdIso := mapIdIso✝, mapCompIso := mapCompIso✝, mapIdIso_inv := mapIdIso_inv✝, mapCompIso_inv := mapCompIso_inv✝ }) = (mapIdIso = mapIdIso✝ ∧ mapCompIso = mapCompIso✝) - CategoryTheory.LaxFunctor.mapComp_assoc_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (F.map₂ (CategoryTheory.Bicategory.associator f g h).inv))) - CategoryTheory.LaxFunctor.mapComp_assoc_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (F.map₂ (CategoryTheory.Bicategory.associator f g h).hom))) - CategoryTheory.LaxFunctor.map₂_associator 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapComp f g) (self.map h)) (CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (self.map₂ (CategoryTheory.Bicategory.associator f g h).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (self.map f) (self.map g) (self.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapComp g h)) (self.mapComp f (CategoryTheory.CategoryStruct.comp g h))) - CategoryTheory.LaxFunctor.mapComp_assoc_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : F.obj a ⟶ F.obj d} (h✝ : F.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f g) h) ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).inv) h✝))) - CategoryTheory.LaxFunctor.mapComp_assoc_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : F.obj a ⟶ F.obj d} (h✝ : F.map (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp g h)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapComp g h)) (CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.comp g h)) h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (F.map h)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (F.map h)) (CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.associator f g h).hom) h✝))) - CategoryTheory.LaxFunctor.map₂_associator_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.LaxFunctor B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) {Z : self.obj a ⟶ self.obj d} (h✝ : self.map (CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp g h)) ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapComp f g) (self.map h)) (CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.comp f g) h) (CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.associator f g h).hom) h✝)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (self.map f) (self.map g) (self.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapComp g h)) (CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.comp g h)) h✝)) - CategoryTheory.LaxFunctor.mapComp_assoc_left_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.comp ((F.map h).map ((F.mapComp f g).app X)) ((F.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) = CategoryTheory.CategoryStruct.comp ((F.mapComp g h).app ((F.map f).obj X)) (CategoryTheory.CategoryStruct.comp ((F.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) ((F.map₂ (CategoryTheory.Bicategory.associator f g h).inv).app X)) - CategoryTheory.LaxFunctor.mapComp_assoc_right_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(F.obj a)) : CategoryTheory.CategoryStruct.comp ((F.mapComp g h).app ((F.map f).obj X)) ((F.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) = CategoryTheory.CategoryStruct.comp ((F.map h).map ((F.mapComp f g).app X)) (CategoryTheory.CategoryStruct.comp ((F.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) ((F.map₂ (CategoryTheory.Bicategory.associator f g h).hom).app X)) - CategoryTheory.LaxFunctor.map₂_associator_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.LaxFunctor B CategoryTheory.Cat) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (X : ↑(self.obj a)) : CategoryTheory.CategoryStruct.comp ((self.map h).map ((self.mapComp f g).app X)) (CategoryTheory.CategoryStruct.comp ((self.mapComp (CategoryTheory.CategoryStruct.comp f g) h).app X) ((self.map₂ (CategoryTheory.Bicategory.associator f g h).hom).app X)) = CategoryTheory.CategoryStruct.comp ((self.mapComp g h).app ((self.map f).obj X)) ((self.mapComp f (CategoryTheory.CategoryStruct.comp g h)).app X) - CategoryTheory.LaxFunctor.mk 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) (mapComp f' g) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) (mapComp f g') := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h)) (mapComp f (CategoryTheory.CategoryStruct.comp g h))) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (mapComp (CategoryTheory.CategoryStruct.id a) f)) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (mapComp f (CategoryTheory.CategoryStruct.id b))) := by cat_disch) : CategoryTheory.LaxFunctor B C - CategoryTheory.LaxFunctor.mk.sizeOf_spec 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] [SizeOf B] [SizeOf C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) (mapComp f' g) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) (mapComp f g') := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h)) (mapComp f (CategoryTheory.CategoryStruct.comp g h))) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (mapComp (CategoryTheory.CategoryStruct.id a) f)) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (mapComp f (CategoryTheory.CategoryStruct.id b))) := by cat_disch) : sizeOf { toPrelaxFunctor := toPrelaxFunctor, mapId := mapId, mapComp := mapComp, mapComp_naturality_left := mapComp_naturality_left, mapComp_naturality_right := mapComp_naturality_right, map₂_associator := map₂_associator, map₂_leftUnitor := map₂_leftUnitor, map₂_rightUnitor := map₂_rightUnitor } = 1 + sizeOf toPrelaxFunctor - CategoryTheory.LaxFunctor.mk.injEq 📋 Mathlib.CategoryTheory.Bicategory.Functor.Lax
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (toPrelaxFunctor : CategoryTheory.PrelaxFunctor B C) (mapId : (a : B) → CategoryTheory.CategoryStruct.id (toPrelaxFunctor.obj a) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.id a)) (mapComp : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → CategoryTheory.CategoryStruct.comp (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) ⟶ toPrelaxFunctor.map (CategoryTheory.CategoryStruct.comp f g)) (mapComp_naturality_left : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor.map₂ η) (toPrelaxFunctor.map g)) (mapComp f' g) := by cat_disch) (mapComp_naturality_right : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (mapComp f g) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (toPrelaxFunctor.map₂ η)) (mapComp f g') := by cat_disch) (map₂_associator : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp f g) (toPrelaxFunctor.map h)) (CategoryTheory.CategoryStruct.comp (mapComp (CategoryTheory.CategoryStruct.comp f g) h) (toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.associator f g h).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (toPrelaxFunctor.map f) (toPrelaxFunctor.map g) (toPrelaxFunctor.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapComp g h)) (mapComp f (CategoryTheory.CategoryStruct.comp g h))) := by cat_disch) (map₂_leftUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId a) (toPrelaxFunctor.map f)) (mapComp (CategoryTheory.CategoryStruct.id a) f)) := by cat_disch) (map₂_rightUnitor : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor.map f) (mapId b)) (mapComp f (CategoryTheory.CategoryStruct.id b))) := by cat_disch) (toPrelaxFunctor✝ : CategoryTheory.PrelaxFunctor B C) (mapId✝ : (a : B) → CategoryTheory.CategoryStruct.id (toPrelaxFunctor✝.obj a) ⟶ toPrelaxFunctor✝.map (CategoryTheory.CategoryStruct.id a)) (mapComp✝ : {a b c : B} → (f : a ⟶ b) → (g : b ⟶ c) → CategoryTheory.CategoryStruct.comp (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map g) ⟶ toPrelaxFunctor✝.map (CategoryTheory.CategoryStruct.comp f g)) (mapComp_naturality_left✝ : ∀ {a b c : B} {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (mapComp✝ f g) (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.whiskerRight η g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (toPrelaxFunctor✝.map₂ η) (toPrelaxFunctor✝.map g)) (mapComp✝ f' g) := by cat_disch) (mapComp_naturality_right✝ : ∀ {a b c : B} (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g'), CategoryTheory.CategoryStruct.comp (mapComp✝ f g) (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map₂ η)) (mapComp✝ f g') := by cat_disch) (map₂_associator✝ : ∀ {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapComp✝ f g) (toPrelaxFunctor✝.map h)) (CategoryTheory.CategoryStruct.comp (mapComp✝ (CategoryTheory.CategoryStruct.comp f g) h) (toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.associator f g h).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (toPrelaxFunctor✝.map f) (toPrelaxFunctor✝.map g) (toPrelaxFunctor✝.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (mapComp✝ g h)) (mapComp✝ f (CategoryTheory.CategoryStruct.comp g h))) := by cat_disch) (map₂_leftUnitor✝ : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (toPrelaxFunctor✝.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (mapId✝ a) (toPrelaxFunctor✝.map f)) (mapComp✝ (CategoryTheory.CategoryStruct.id a) f)) := by cat_disch) (map₂_rightUnitor✝ : ∀ {a b : B} (f : a ⟶ b), toPrelaxFunctor✝.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (toPrelaxFunctor✝.map f)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (toPrelaxFunctor✝.map f) (mapId✝ b)) (mapComp✝ f (CategoryTheory.CategoryStruct.id b))) := by cat_disch) : ({ toPrelaxFunctor := toPrelaxFunctor, mapId := mapId, mapComp := mapComp, mapComp_naturality_left := mapComp_naturality_left, mapComp_naturality_right := mapComp_naturality_right, map₂_associator := map₂_associator, map₂_leftUnitor := map₂_leftUnitor, map₂_rightUnitor := map₂_rightUnitor } = { toPrelaxFunctor := toPrelaxFunctor✝, mapId := mapId✝, mapComp := mapComp✝, mapComp_naturality_left := mapComp_naturality_left✝, mapComp_naturality_right := mapComp_naturality_right✝, map₂_associator := map₂_associator✝, map₂_leftUnitor := map₂_leftUnitor✝, map₂_rightUnitor := map₂_rightUnitor✝ }) = (toPrelaxFunctor = toPrelaxFunctor✝ ∧ mapId ≍ mapId✝ ∧ mapComp ≍ mapComp✝) - CategoryTheory.Pseudofunctor.mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) (a : B) : self.map (CategoryTheory.CategoryStruct.id a) ≅ CategoryTheory.CategoryStruct.id (self.obj a) - CategoryTheory.Pseudofunctor.mapId' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b := by cat_disch) : F.map f ≅ CategoryTheory.CategoryStruct.id (F.obj b) - CategoryTheory.Pseudofunctor.mkOfLax_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) (F' : F.PseudoCore) (a : B) : (CategoryTheory.Pseudofunctor.mkOfLax F F').mapId a = F'.mapIdIso a - CategoryTheory.Pseudofunctor.mkOfOplax_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) (F' : F.PseudoCore) (a : B) : (CategoryTheory.Pseudofunctor.mkOfOplax F F').mapId a = F'.mapIdIso a - CategoryTheory.Pseudofunctor.mapId'_eq_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) (b : B) : F.mapId' (CategoryTheory.CategoryStruct.id b) ⋯ = F.mapId b - CategoryTheory.Pseudofunctor.mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : self.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) - CategoryTheory.Pseudofunctor.mapComp' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg := by cat_disch) : F.map fg ≅ CategoryTheory.CategoryStruct.comp (F.map f) (F.map g) - CategoryTheory.Pseudofunctor.mkOfLax_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) (F' : F.PseudoCore) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : (CategoryTheory.Pseudofunctor.mkOfLax F F').mapComp f g = F'.mapCompIso f g - CategoryTheory.Pseudofunctor.mkOfOplax_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) (F' : F.PseudoCore) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : (CategoryTheory.Pseudofunctor.mkOfOplax F F').mapComp f g = F'.mapCompIso f g - CategoryTheory.Pseudofunctor.mapComp'_eq_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) : F.mapComp' f g (CategoryTheory.CategoryStruct.comp f g) ⋯ = F.mapComp f g - CategoryTheory.Pseudofunctor.mapId'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b) : F.mapId' f hf = F.map₂Iso (CategoryTheory.eqToIso ⋯) ≪≫ F.mapId b - CategoryTheory.Pseudofunctor.toLax_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) (a : B) : F.toLax.mapId a = (F.mapId a).inv - CategoryTheory.Pseudofunctor.toOplax_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) (a : B) : F.toOplax.mapId a = (F.mapId a).hom - CategoryTheory.Pseudofunctor.mkOfLax' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] : CategoryTheory.Pseudofunctor B C - CategoryTheory.Pseudofunctor.mkOfOplax' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] : CategoryTheory.Pseudofunctor B C - CategoryTheory.Pseudofunctor.mkOfLax'_toPrelaxFunctor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] : (CategoryTheory.Pseudofunctor.mkOfLax' F).toPrelaxFunctor = F.toPrelaxFunctor - CategoryTheory.Pseudofunctor.mkOfOplax'_toPrelaxFunctor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] : (CategoryTheory.Pseudofunctor.mkOfOplax' F).toPrelaxFunctor = F.toPrelaxFunctor - CategoryTheory.Pseudofunctor.toLax_mapId' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b := by cat_disch) : F.toLax.mapId' f hf = (F.mapId' f hf).inv - CategoryTheory.Pseudofunctor.toOplax_mapId' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b : B} (f : b ⟶ b) (hf : f = CategoryTheory.CategoryStruct.id b := by cat_disch) : F.toOplax.mapId' f hf = (F.mapId' f hf).hom - CategoryTheory.Pseudofunctor.mapComp'.eq_1 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg) : F.mapComp' f g fg h = F.map₂Iso (CategoryTheory.eqToIso ⋯) ≪≫ F.mapComp f g - CategoryTheory.Pseudofunctor.toLax_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : F.toLax.mapComp f g = (F.mapComp f g).inv - CategoryTheory.Pseudofunctor.toOplax_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : F.toOplax.mapComp f g = (F.mapComp f g).hom - CategoryTheory.Pseudofunctor.comp_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {D : Type u₃} [CategoryTheory.Bicategory D] (F : CategoryTheory.Pseudofunctor B C) (G : CategoryTheory.Pseudofunctor C D) (a : B) : (F.comp G).mapId a = G.map₂Iso (F.mapId a) ≪≫ G.mapId (F.obj a) - CategoryTheory.Pseudofunctor.toLax_mapComp' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg := by cat_disch) : F.toLax.mapComp' f g fg h = (F.mapComp' f g fg h).inv - CategoryTheory.Pseudofunctor.toOplax_mapComp' 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {b₀ b₁ b₂ : B} (f : b₀ ⟶ b₁) (g : b₁ ⟶ b₂) (fg : b₀ ⟶ b₂) (h : CategoryTheory.CategoryStruct.comp f g = fg := by cat_disch) : F.toOplax.mapComp' f g fg h = (F.mapComp' f g fg h).hom - CategoryTheory.Pseudofunctor.mkOfLax'_mapId_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] (a : B) : ((CategoryTheory.Pseudofunctor.mkOfLax' F).mapId a).inv = F.mapId a - CategoryTheory.Pseudofunctor.mkOfOplax'_mapId_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] (a : B) : ((CategoryTheory.Pseudofunctor.mkOfOplax' F).mapId a).hom = F.mapId a - CategoryTheory.Pseudofunctor.mkOfLax'_mapId_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] (a : B) : ((CategoryTheory.Pseudofunctor.mkOfLax' F).mapId a).hom = CategoryTheory.inv (F.mapId a) - CategoryTheory.Pseudofunctor.mkOfOplax'_mapId_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] (a : B) : ((CategoryTheory.Pseudofunctor.mkOfOplax' F).mapId a).inv = CategoryTheory.inv (F.mapId a) - CategoryTheory.Pseudofunctor.mkOfLax'_mapComp_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : ((CategoryTheory.Pseudofunctor.mkOfLax' F).mapComp f g).inv = F.mapComp f g - CategoryTheory.Pseudofunctor.mkOfOplax'_mapComp_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : ((CategoryTheory.Pseudofunctor.mkOfOplax' F).mapComp f g).hom = F.mapComp f g - CategoryTheory.Pseudofunctor.comp_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {D : Type u₃} [CategoryTheory.Bicategory D] (F : CategoryTheory.Pseudofunctor B C) (G : CategoryTheory.Pseudofunctor C D) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : (F.comp G).mapComp f g = G.map₂Iso (F.mapComp f g) ≪≫ G.mapComp (F.map f) (F.map g) - CategoryTheory.Pseudofunctor.mkOfLax'_mapComp_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.LaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : ((CategoryTheory.Pseudofunctor.mkOfLax' F).mapComp f g).hom = CategoryTheory.inv (F.mapComp f g) - CategoryTheory.Pseudofunctor.mkOfOplax'_mapComp_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.OplaxFunctor B C) [∀ (a : B), CategoryTheory.IsIso (F.mapId a)] [∀ {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.IsIso (F.mapComp f g)] {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : ((CategoryTheory.Pseudofunctor.mkOfOplax' F).mapComp f g).inv = CategoryTheory.inv (F.mapComp f g) - CategoryTheory.Pseudofunctor.map₂_whisker_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b c : B} (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) : self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η) = CategoryTheory.CategoryStruct.comp (self.mapComp f g).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) (self.mapComp f h).inv) - CategoryTheory.Pseudofunctor.map₂_whisker_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b c : B} {f g : a ⟶ b} (η : f ⟶ g) (h : b ⟶ c) : self.map₂ (CategoryTheory.Bicategory.whiskerRight η h) = CategoryTheory.CategoryStruct.comp (self.mapComp f h).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map h)) (self.mapComp g h).inv) - CategoryTheory.Pseudofunctor.mapComp_id_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : F.mapComp (CategoryTheory.CategoryStruct.id a) f = F.map₂Iso (CategoryTheory.Bicategory.leftUnitor f) ≪≫ (CategoryTheory.Bicategory.leftUnitor (F.map f)).symm ≪≫ (CategoryTheory.Bicategory.whiskerRightIso (F.mapId a) (F.map f)).symm - CategoryTheory.Pseudofunctor.mapComp_id_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : F.mapComp f (CategoryTheory.CategoryStruct.id b) = F.map₂Iso (CategoryTheory.Bicategory.rightUnitor f) ≪≫ (CategoryTheory.Bicategory.rightUnitor (F.map f)).symm ≪≫ (CategoryTheory.Bicategory.whiskerLeftIso (F.map f) (F.mapId b)).symm - CategoryTheory.Pseudofunctor.whiskerLeftIso_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerLeftIso (F.map f) (F.mapId b) = (F.mapComp f (CategoryTheory.CategoryStruct.id b)).symm ≪≫ F.map₂Iso (CategoryTheory.Bicategory.rightUnitor f) ≪≫ (CategoryTheory.Bicategory.rightUnitor (F.map f)).symm - CategoryTheory.Pseudofunctor.whiskerRightIso_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerRightIso (F.mapId a) (F.map f) = (F.mapComp (CategoryTheory.CategoryStruct.id a) f).symm ≪≫ F.map₂Iso (CategoryTheory.Bicategory.leftUnitor f) ≪≫ (CategoryTheory.Bicategory.leftUnitor (F.map f)).symm - CategoryTheory.Pseudofunctor.map₂_left_unitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.id a) f).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapId a).hom (self.map f)) (CategoryTheory.Bicategory.leftUnitor (self.map f)).hom) - CategoryTheory.Pseudofunctor.map₂_right_unitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.id b)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapId b).hom) (CategoryTheory.Bicategory.rightUnitor (self.map f)).hom) - CategoryTheory.Pseudofunctor.mapComp_id_left_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : (F.mapComp (CategoryTheory.CategoryStruct.id a) f).hom = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (F.map f)).inv (CategoryTheory.Bicategory.whiskerRight (F.mapId a).inv (F.map f))) - CategoryTheory.Pseudofunctor.mapComp_id_right_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : (F.mapComp f (CategoryTheory.CategoryStruct.id b)).hom = CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).inv (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b).inv)) - CategoryTheory.Pseudofunctor.mapComp_id_left_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : (F.mapComp (CategoryTheory.CategoryStruct.id a) f).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapId a).hom (F.map f)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (F.map f)).hom (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv)) - CategoryTheory.Pseudofunctor.mapComp_id_right_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : (F.mapComp f (CategoryTheory.CategoryStruct.id b)).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).hom (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv)) - CategoryTheory.Pseudofunctor.map₂_right_unitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom).app X = CategoryTheory.CategoryStruct.comp ((self.mapComp f (CategoryTheory.CategoryStruct.id b)).hom.app X) ((self.mapId b).hom.app ((self.map f).obj X)) - CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (F.map f)).hom (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv) (F.mapComp f (CategoryTheory.CategoryStruct.id b)).hom) - CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerRight (F.mapId a).inv (F.map f) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (F.map f)).hom (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv) (F.mapComp (CategoryTheory.CategoryStruct.id a) f).hom) - CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerLeft (F.map f) (F.mapId b).hom = CategoryTheory.CategoryStruct.comp (F.mapComp f (CategoryTheory.CategoryStruct.id b)).inv (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom) (CategoryTheory.Bicategory.rightUnitor (F.map f)).inv) - CategoryTheory.Pseudofunctor.whiskerRight_mapId_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {a b : B} (f : a ⟶ b) : CategoryTheory.Bicategory.whiskerRight (F.mapId a).hom (F.map f) = CategoryTheory.CategoryStruct.comp (F.mapComp (CategoryTheory.CategoryStruct.id a) f).inv (CategoryTheory.CategoryStruct.comp (F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom) (CategoryTheory.Bicategory.leftUnitor (F.map f)).inv) - CategoryTheory.Pseudofunctor.mapComp_id_right_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.mapComp f (CategoryTheory.CategoryStruct.id b)).hom.app X = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom).app X) ((F.mapId b).inv.app ((F.map f).obj X)) - CategoryTheory.Pseudofunctor.whiskerLeft_mapId_inv_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.mapId b).inv.app ((F.map f).obj X) = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv).app X) ((F.mapComp f (CategoryTheory.CategoryStruct.id b)).hom.app X) - CategoryTheory.Pseudofunctor.mapComp_id_right_inv_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.mapComp f (CategoryTheory.CategoryStruct.id b)).inv.app X = CategoryTheory.CategoryStruct.comp ((F.mapId b).hom.app ((F.map f).obj X)) ((F.map₂ (CategoryTheory.Bicategory.rightUnitor f).inv).app X) - CategoryTheory.Pseudofunctor.map₂_left_unitor_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (self : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(self.obj a)) : (self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom).app X = CategoryTheory.CategoryStruct.comp ((self.mapComp (CategoryTheory.CategoryStruct.id a) f).hom.app X) ((self.map f).map ((self.mapId a).hom.app X)) - CategoryTheory.Pseudofunctor.map₂_whisker_left_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b c : B} (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) {Z : self.obj a ⟶ self.obj c} (h✝ : self.map (CategoryTheory.CategoryStruct.comp f h) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η)) h✝ = CategoryTheory.CategoryStruct.comp (self.mapComp f g).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) (CategoryTheory.CategoryStruct.comp (self.mapComp f h).inv h✝)) - CategoryTheory.Pseudofunctor.map₂_whisker_right_assoc 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.Pseudofunctor B C) {a b c : B} {f g : a ⟶ b} (η : f ⟶ g) (h : b ⟶ c) {Z : self.obj a ⟶ self.obj c} (h✝ : self.map (CategoryTheory.CategoryStruct.comp g h) ⟶ Z) : CategoryTheory.CategoryStruct.comp (self.map₂ (CategoryTheory.Bicategory.whiskerRight η h)) h✝ = CategoryTheory.CategoryStruct.comp (self.mapComp f h).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map h)) (CategoryTheory.CategoryStruct.comp (self.mapComp g h).inv h✝)) - CategoryTheory.Pseudofunctor.whiskerLeft_mapId_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.mapId b).hom.app ((F.map f).obj X) = CategoryTheory.CategoryStruct.comp ((F.mapComp f (CategoryTheory.CategoryStruct.id b)).inv.app X) ((F.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom).app X) - CategoryTheory.Pseudofunctor.mapComp_id_left_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.mapComp (CategoryTheory.CategoryStruct.id a) f).hom.app X = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom).app X) ((F.map f).map ((F.mapId a).inv.app X)) - CategoryTheory.Pseudofunctor.whiskerRight_mapId_inv_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Pseudofunctor
{B : Type u_1} [CategoryTheory.Bicategory B] (F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat) {a b : B} (f : a ⟶ b) (X : ↑(F.obj a)) : (F.map f).map ((F.mapId a).inv.app X) = CategoryTheory.CategoryStruct.comp ((F.map₂ (CategoryTheory.Bicategory.leftUnitor f).inv).app X) ((F.mapComp (CategoryTheory.CategoryStruct.id a) f).hom.app X)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177