Loogle!
Result
Found 11 declarations mentioning PrimeSpectrum.BasicConstructibleSetData.map.
- PrimeSpectrum.BasicConstructibleSetData.map_id ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} [CommSemiring R] (C : PrimeSpectrum.BasicConstructibleSetData R) : PrimeSpectrum.BasicConstructibleSetData.map (RingHom.id R) C = C - PrimeSpectrum.BasicConstructibleSetData.map ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : PrimeSpectrum.BasicConstructibleSetData S - PrimeSpectrum.BasicConstructibleSetData.map_id' ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} [CommSemiring R] : PrimeSpectrum.BasicConstructibleSetData.map (RingHom.id R) = id - PrimeSpectrum.BasicConstructibleSetData.map_n ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : (PrimeSpectrum.BasicConstructibleSetData.map ฯ C).n = C.n - PrimeSpectrum.ConstructibleSetData.map.eq_1 ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (s : PrimeSpectrum.ConstructibleSetData R) : PrimeSpectrum.ConstructibleSetData.map ฯ s = Finset.image (PrimeSpectrum.BasicConstructibleSetData.map ฯ) s - PrimeSpectrum.BasicConstructibleSetData.map_f ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : (PrimeSpectrum.BasicConstructibleSetData.map ฯ C).f = ฯ C.f - PrimeSpectrum.BasicConstructibleSetData.map_g ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) (aโ : Fin C.n) : (PrimeSpectrum.BasicConstructibleSetData.map ฯ C).g aโ = (โฯ โ C.g) aโ - PrimeSpectrum.BasicConstructibleSetData.map_comp ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (ฯ : S โ+* T) (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : PrimeSpectrum.BasicConstructibleSetData.map (ฯ.comp ฯ) C = PrimeSpectrum.BasicConstructibleSetData.map ฯ (PrimeSpectrum.BasicConstructibleSetData.map ฯ C) - PrimeSpectrum.BasicConstructibleSetData.map_comp' ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (ฯ : S โ+* T) (ฯ : R โ+* S) : PrimeSpectrum.BasicConstructibleSetData.map (ฯ.comp ฯ) = PrimeSpectrum.BasicConstructibleSetData.map ฯ โ PrimeSpectrum.BasicConstructibleSetData.map ฯ - PrimeSpectrum.BasicConstructibleSetData.toSet_map ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : (PrimeSpectrum.BasicConstructibleSetData.map ฯ C).toSet = โ(PrimeSpectrum.comap ฯ) โปยน' C.toSet - PrimeSpectrum.BasicConstructibleSetData.map.eq_1 ๐ Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (ฯ : R โ+* S) (C : PrimeSpectrum.BasicConstructibleSetData R) : PrimeSpectrum.BasicConstructibleSetData.map ฯ C = { f := ฯ C.f, n := C.n, g := โฯ โ C.g }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65