Loogle!
Result
Found 118 declarations mentioning Projectivization.
- Projectivization π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : Type u_2 - Projectivization.rep π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : V - Projectivization.instNonemptyOfNontrivial π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] [Nontrivial V] : Nonempty (Projectivization K V) - Projectivization.submodule π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : Submodule K V - Projectivization.submodule_injective π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] : Function.Injective Projectivization.submodule - Projectivization.mk π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (hv : v β 0) : Projectivization K V - Projectivization.mk' π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : { v // v β 0 }) : Projectivization K V - Projectivization.rep_nonzero π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : v.rep β 0 - Projectivization.mk''_submodule π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : Projectivization.mk'' v.submodule β― = v - Projectivization.mk_rep π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : Projectivization.mk K v.rep β― = v - Projectivization.ind π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {P : Projectivization K V β Prop} (h : β (v : V) (h : v β 0), P (Projectivization.mk K v h)) (p : Projectivization K V) : P p - Projectivization.submodule_eq π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : v.submodule = K β v.rep - Projectivization.mk.congr_simp π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v vβ : V) (e_v : v = vβ) (hv : v β 0) : Projectivization.mk K v hv = Projectivization.mk K vβ β― - Projectivization.mk'_eq_mk π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : { v // v β 0 }) : Projectivization.mk' K v = Projectivization.mk K βv β― - Projectivization.instFiniteDimensionalSubtypeMemSubmoduleSubmodule π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : FiniteDimensional K β₯v.submodule - Projectivization.mk'' π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (H : Submodule K V) (h : Module.finrank K β₯H = 1) : Projectivization K V - Projectivization.finrank_submodule π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) : Module.finrank K β₯v.submodule = 1 - Projectivization.equivSubmodule π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : Projectivization K V β { H // Module.finrank K β₯H = 1 } - Projectivization.map_id π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] : Projectivization.map LinearMap.id β― = id - Projectivization.map π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {Ο : K β+* L} (f : V βββ[Ο] W) (hf : Function.Injective βf) : Projectivization K V β Projectivization L W - Projectivization.mk_eq_mk_iff' π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v w : V) (hv : v β 0) (hw : w β 0) : Projectivization.mk K v hv = Projectivization.mk K w hw β β a, a β’ w = v - Projectivization.map_injective π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {Ο : K β+* L} {Ο : L β+* K} [RingHomInvPair Ο Ο] (f : V βββ[Ο] W) (hf : Function.Injective βf) : Function.Injective (Projectivization.map f hf) - Projectivization.mk_eq_mk_iff π Mathlib.LinearAlgebra.Projectivization.Basic
(K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v w : V) (hv : v β 0) (hw : w β 0) : Projectivization.mk K v hv = Projectivization.mk K w hw β β a, a β’ w = v - Projectivization.lift π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {Ξ± : Type u_3} (f : { v // v β 0 } β Ξ±) (hf : β (a b : { v // v β 0 }) (t : K), βa = t β’ βb β f a = f b) (x : Projectivization K V) : Ξ± - Projectivization.map.congr_simp π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {Ο : K β+* L} (f fβ : V βββ[Ο] W) (e_f : f = fβ) (hf : Function.Injective βf) (aβ aβΒΉ : Projectivization K V) : aβ = aβΒΉ β Projectivization.map f hf aβ = Projectivization.map fβ β― aβΒΉ - Projectivization.map_comp π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {F : Type u_5} {U : Type u_6} [DivisionRing F] [AddCommGroup U] [Module F U] {Ο : K β+* L} {Ο : L β+* F} {Ξ³ : K β+* F} [RingHomCompTriple Ο Ο Ξ³] (f : V βββ[Ο] W) (hf : Function.Injective βf) (g : W βββ[Ο] U) (hg : Function.Injective βg) (hgf : Function.Injective β(g βββ f) := β―) : Projectivization.map (g βββ f) hgf = Projectivization.map g hg β Projectivization.map f hf - Projectivization.map_mk π Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {Ο : K β+* L} (f : V βββ[Ο] W) (hf : Function.Injective βf) (v : V) (hv : v β 0) : Projectivization.map f hf (Projectivization.mk K v hv) = Projectivization.mk L (f v) β― - Projectivization.orthogonal π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] {m : Type u_2} [Fintype m] : Projectivization F (m β F) β Projectivization F (m β F) β Prop - Projectivization.orthogonal_comm π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] {m : Type u_2} [Fintype m] {v w : Projectivization F (m β F)} : v.orthogonal w β w.orthogonal v - Projectivization.cross_self π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] (v : Projectivization F (Fin 3 β F)) : v.cross v = v - Projectivization.exists_not_orthogonal_self π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] {m : Type u_2} [Fintype m] (v : Projectivization F (m β F)) : β w, Β¬w.orthogonal v - Projectivization.exists_not_self_orthogonal π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] {m : Type u_2} [Fintype m] (v : Projectivization F (m β F)) : β w, Β¬v.orthogonal w - Projectivization.cross π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] : Projectivization F (Fin 3 β F) β Projectivization F (Fin 3 β F) β Projectivization F (Fin 3 β F) - Projectivization.cross_comm π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] (v w : Projectivization F (Fin 3 β F)) : v.cross w = w.cross v - Projectivization.cross_orthogonal_left π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Projectivization F (Fin 3 β F)} (h : v β w) : (v.cross w).orthogonal v - Projectivization.cross_orthogonal_right π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Projectivization F (Fin 3 β F)} (h : v β w) : (v.cross w).orthogonal w - Projectivization.orthogonal_cross_left π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Projectivization F (Fin 3 β F)} (h : v β w) : v.orthogonal (v.cross w) - Projectivization.orthogonal_cross_right π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Projectivization F (Fin 3 β F)} (h : v β w) : w.orthogonal (v.cross w) - Projectivization.mk_eq_mk_iff_crossProduct_eq_zero π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] {v w : Fin 3 β F} (hv : v β 0) (hw : w β 0) : Projectivization.mk F v hv = Projectivization.mk F w hw β (crossProduct v) w = 0 - Projectivization.cross_mk_of_cross_eq_zero π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Fin 3 β F} (hv : v β 0) (hw : w β 0) (h : (crossProduct v) w = 0) : (Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F v hv - Projectivization.cross_mk_of_cross_ne_zero π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Fin 3 β F} (hv : v β 0) (hw : w β 0) (h : (crossProduct v) w β 0) : (Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F ((crossProduct v) w) h - Projectivization.cross_mk_of_ne π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Fin 3 β F} (hv : v β 0) (hw : w β 0) (h : Projectivization.mk F v hv β Projectivization.mk F w hw) : (Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = Projectivization.mk F ((crossProduct v) w) β― - Projectivization.cross_mk π Mathlib.LinearAlgebra.Projectivization.Constructions
{F : Type u_1} [Field F] [DecidableEq F] {v w : Fin 3 β F} (hv : v β 0) (hw : w β 0) : (Projectivization.mk F v hv).cross (Projectivization.mk F w hw) = if h : (crossProduct v) w = 0 then Projectivization.mk F v hv else Projectivization.mk F ((crossProduct v) w) h - Configuration.ofField.instMembershipProjectivizationForallFinOfNatNat π Mathlib.Combinatorics.Configuration
{K : Type u_3} [Field K] : Membership (Projectivization K (Fin 3 β K)) (Projectivization K (Fin 3 β K)) - Configuration.ofField.instNondegenerateProjectivizationForallFinOfNatNat π Mathlib.Combinatorics.Configuration
{K : Type u_3} [Field K] : Configuration.Nondegenerate (Projectivization K (Fin 3 β K)) (Projectivization K (Fin 3 β K)) - Configuration.ofField.instProjectivePlaneProjectivizationForallFinOfNatNatOfDecidableEq π Mathlib.Combinatorics.Configuration
{K : Type u_3} [Field K] [DecidableEq K] : Configuration.ProjectivePlane (Projectivization K (Fin 3 β K)) (Projectivization K (Fin 3 β K)) - Configuration.ofField.mem_iff π Mathlib.Combinatorics.Configuration
{K : Type u_3} [Field K] (v w : Projectivization K (Fin 3 β K)) : v β w β v.orthogonal w - Configuration.ofField.eq_or_eq_of_orthogonal π Mathlib.Combinatorics.Configuration
{K : Type u_3} [Field K] {a b c d : Projectivization K (Fin 3 β K)} (hac : a.orthogonal c) (hbc : b.orthogonal c) (had : a.orthogonal d) (hbd : b.orthogonal d) : a = b β¨ c = d - Projectivization.instMulAction π Mathlib.LinearAlgebra.Projectivization.Action
{G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] : MulAction G (Projectivization K V) - Projectivization.smul_mk π Mathlib.LinearAlgebra.Projectivization.Action
{G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] (g : G) {v : V} (hv : v β 0) : g β’ Projectivization.mk K v hv = Projectivization.mk K (g β’ v) β― - Projectivization.smul_def π Mathlib.LinearAlgebra.Projectivization.Action
{G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] (g : G) (x : Projectivization K V) : SMul.smul g x = Projectivization.map ((DistribMulAction.toModuleEnd K V) g) β― x - Projectivization.generalLinearGroup_smul_def π Mathlib.LinearAlgebra.Projectivization.Action
{K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] (g : LinearMap.GeneralLinearGroup K V) (x : Projectivization K V) : g β’ x = Projectivization.map βg.toLinearEquiv β― x - Projectivization.finite_of_finite π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] [Finite V] : Finite (Projectivization k V) - Projectivization.isEmpty_of_subsingleton π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] [Subsingleton V] : IsEmpty (Projectivization k V) - Projectivization.finite_iff_of_finite π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] [Finite k] : Finite (Projectivization k V) β Finite V - Projectivization.nonZeroEquivProjectivizationProdUnits π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] : { v // v β 0 } β Projectivization k V Γ kΛ£ - Projectivization.card π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] : Nat.card V - 1 = Nat.card (Projectivization k V) * (Nat.card k - 1) - Projectivization.card' π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] [Finite V] : Nat.card V = Nat.card (Projectivization k V) * (Nat.card k - 1) + 1 - Projectivization.card'' π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [Field k] [AddCommGroup V] [Module k V] [Finite k] : Nat.card (Projectivization k V) = (Nat.card V - 1) / (Nat.card k - 1) - Projectivization.card_of_finrank_two π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [Field k] [AddCommGroup V] [Module k V] [Finite k] (h : Module.finrank k V = 2) : Nat.card (Projectivization k V) = Nat.card k + 1 - Projectivization.card_of_finrank π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [Field k] [AddCommGroup V] [Module k V] [Finite k] {n : β} (h : Module.finrank k V = n) : Nat.card (Projectivization k V) = β i β Finset.range n, Nat.card k ^ i - Projectivization.equivQuotientOrbitRel π Mathlib.LinearAlgebra.Projectivization.Cardinality
(k : Type u_1) (V : Type u_2) [DivisionRing k] [AddCommGroup V] [Module k V] : Projectivization k V β Quotient (MulAction.orbitRel kΛ£ { v // v β 0 }) - Projectivization.Dependent π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] : (ΞΉ β Projectivization K V) β Prop - Projectivization.Independent π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] : (ΞΉ β Projectivization K V) β Prop - Projectivization.dependent_iff_not_independent π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] {f : ΞΉ β Projectivization K V} : Projectivization.Dependent f β Β¬Projectivization.Independent f - Projectivization.independent_iff_not_dependent π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] {f : ΞΉ β Projectivization K V} : Projectivization.Independent f β Β¬Projectivization.Dependent f - Projectivization.independent_iff π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] {f : ΞΉ β Projectivization K V} : Projectivization.Independent f β LinearIndependent K (Projectivization.rep β f) - Projectivization.dependent_iff π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] {f : ΞΉ β Projectivization K V} : Projectivization.Dependent f β Β¬LinearIndependent K (Projectivization.rep β f) - Projectivization.independent_iff_iSupIndep π Mathlib.LinearAlgebra.Projectivization.Independence
{ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] {f : ΞΉ β Projectivization K V} : Projectivization.Independent f β iSupIndep fun i => (f i).submodule - Projectivization.dependent_pair_iff_eq π Mathlib.LinearAlgebra.Projectivization.Independence
{K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] (u v : Projectivization K V) : Projectivization.Dependent ![u, v] β u = v - Projectivization.independent_pair_iff_ne π Mathlib.LinearAlgebra.Projectivization.Independence
{K : Type u_2} {V : Type u_3} [DivisionRing K] [AddCommGroup V] [Module K V] (u v : Projectivization K V) : Projectivization.Independent ![u, v] β u β v - Projectivization.Subspace.carrier π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (self : Projectivization.Subspace K V) : Set (Projectivization K V) - Projectivization.Subspace.instSetLike π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : SetLike (Projectivization.Subspace K V) (Projectivization K V) - Projectivization.Subspace.span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (S : Set (Projectivization K V)) : Projectivization.Subspace K V - Projectivization.Subspace.spanCarrier π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (S : Set (Projectivization K V)) : Set (Projectivization K V) - Projectivization.Subspace.span_coe π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (W : Projectivization.Subspace K V) : Projectivization.Subspace.span βW = W - Projectivization.Subspace.spanCarrier.below π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {motive : (a : Projectivization K V) β Projectivization.Subspace.spanCarrier S a β Prop} {aβ : Projectivization K V} (t : Projectivization.Subspace.spanCarrier S aβ) : Prop - Projectivization.Subspace.ext π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} {instβ : Field K} {instβΒΉ : AddCommGroup V} {instβΒ² : Module K V} {x y : Projectivization.Subspace K V} (carrier : x.carrier = y.carrier) : x = y - Projectivization.Subspace.ext_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} {instβ : Field K} {instβΒΉ : AddCommGroup V} {instβΒ² : Module K V} {x y : Projectivization.Subspace K V} : x = y β x.carrier = y.carrier - Projectivization.Subspace.spanCarrier.of π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} (x : Projectivization K V) (hx : x β S) : Projectivization.Subspace.spanCarrier S x - Projectivization.Subspace.subset_span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (S : Set (Projectivization K V)) : S β β(Projectivization.Subspace.span S) - Projectivization.Subspace.span_iUnion π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {ΞΉ : Sort u_3} (s : ΞΉ β Set (Projectivization K V)) : Projectivization.Subspace.span (β i, s i) = β¨ i, Projectivization.Subspace.span (s i) - Projectivization.Subspace.spanCarrier.brecOn π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {motive : (a : Projectivization K V) β Projectivization.Subspace.spanCarrier S a β Prop} {aβ : Projectivization K V} (t : Projectivization.Subspace.spanCarrier S aβ) (F_1 : β (a : Projectivization K V) (t : Projectivization.Subspace.spanCarrier S a), Projectivization.Subspace.spanCarrier.below t β motive a t) : motive aβ t - Projectivization.Subspace.spanCarrier.below.of π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {motive : (a : Projectivization K V) β Projectivization.Subspace.spanCarrier S a β Prop} (x : Projectivization K V) (hx : x β S) : Projectivization.Subspace.spanCarrier.below β― - Projectivization.Subspace.mem_carrier_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (A : Projectivization.Subspace K V) (x : Projectivization K V) : x β A.carrier β x β A - Projectivization.Subspace.span_eq_sInf π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} : Projectivization.Subspace.span S = sInf {W | S β βW} - Projectivization.Subspace.span_le_span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {s t : Set (Projectivization K V)} (hst : s β t) : Projectivization.Subspace.span s β€ Projectivization.Subspace.span t - Projectivization.Subspace.span_le_subspace_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {W : Projectivization.Subspace K V} : Projectivization.Subspace.span S β€ W β S β βW - Projectivization.Subspace.span_union π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (S T : Set (Projectivization K V)) : Projectivization.Subspace.span (S βͺ T) = Projectivization.Subspace.span S β Projectivization.Subspace.span T - Projectivization.Subspace.monotone_span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : Monotone Projectivization.Subspace.span - Projectivization.Subspace.span_sup π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {W : Projectivization.Subspace K V} : Projectivization.Subspace.span S β W = Projectivization.Subspace.span (S βͺ βW) - Projectivization.Subspace.sup_span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {W : Projectivization.Subspace K V} : W β Projectivization.Subspace.span S = Projectivization.Subspace.span (βW βͺ S) - Projectivization.Subspace.span_eq_of_le π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {W : Projectivization.Subspace K V} (hS : S β βW) (hW : W β€ Projectivization.Subspace.span S) : Projectivization.Subspace.span S = W - Projectivization.Subspace.gi π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : GaloisInsertion Projectivization.Subspace.span SetLike.coe - Projectivization.Subspace.span_eq_span_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S T : Set (Projectivization K V)} : Projectivization.Subspace.span S = Projectivization.Subspace.span T β S β β(Projectivization.Subspace.span T) β§ T β β(Projectivization.Subspace.span S) - Projectivization.Subspace.span_univ π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : Projectivization.Subspace.span Set.univ = β€ - Projectivization.Subspace.mem_span π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} (u : Projectivization K V) : u β Projectivization.Subspace.span S β β (W : Projectivization.Subspace K V), S β βW β u β W - Projectivization.Subspace.span_empty π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : Projectivization.Subspace.span β = β₯ - Projectivization.Subspace.spanCarrier.mem_add π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0) : Projectivization.Subspace.spanCarrier S (Projectivization.mk K v hv) β Projectivization.Subspace.spanCarrier S (Projectivization.mk K w hw) β Projectivization.Subspace.spanCarrier S (Projectivization.mk K (v + w) hvw) - Projectivization.Subspace.subset_span_trans π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S T U : Set (Projectivization K V)} (hST : S β β(Projectivization.Subspace.span T)) (hTU : T β β(Projectivization.Subspace.span U)) : S β β(Projectivization.Subspace.span U) - Projectivization.Subspace.mk π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (carrier : Set (Projectivization K V)) (mem_add' : β (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0), Projectivization.mk K v hv β carrier β Projectivization.mk K w hw β carrier β Projectivization.mk K (v + w) hvw β carrier) : Projectivization.Subspace K V - Projectivization.Subspace.mem_add' π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (self : Projectivization.Subspace K V) (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0) : Projectivization.mk K v hv β self.carrier β Projectivization.mk K w hw β self.carrier β Projectivization.mk K (v + w) hvw β self.carrier - Projectivization.Subspace.mem_add π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (T : Projectivization.Subspace K V) (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0) : Projectivization.mk K v hv β T β Projectivization.mk K w hw β T β Projectivization.mk K (v + w) hvw β T - Projectivization.Subspace.spanCarrier.below.mem_add π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] {S : Set (Projectivization K V)} {motive : (a : Projectivization K V) β Projectivization.Subspace.spanCarrier S a β Prop} (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0) (aβ : Projectivization.Subspace.spanCarrier S (Projectivization.mk K v hv)) (aβΒΉ : Projectivization.Subspace.spanCarrier S (Projectivization.mk K w hw)) : Projectivization.Subspace.spanCarrier.below aβ β motive (Projectivization.mk K v hv) aβ β Projectivization.Subspace.spanCarrier.below aβΒΉ β motive (Projectivization.mk K w hw) aβΒΉ β Projectivization.Subspace.spanCarrier.below β― - Projectivization.Subspace.mk.sizeOf_spec π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [SizeOf K] [SizeOf V] (carrier : Set (Projectivization K V)) (mem_add' : β (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0), Projectivization.mk K v hv β carrier β Projectivization.mk K w hw β carrier β Projectivization.mk K (v + w) hvw β carrier) : sizeOf { carrier := carrier, mem_add' := mem_add' } = 1 - Projectivization.Subspace.mem_submodule_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Projectivization.Subspace K V) {v : V} (hv : v β 0) : v β Projectivization.Subspace.submodule s β Projectivization.mk K v hv β s - Submodule.mk_mem_projectivization_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Submodule K V) {v : V} (hv : v β 0) : Projectivization.mk K v hv β Submodule.projectivization s β v β s - Submodule.mem_projectivization_iff_submodule_le π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Submodule K V) (x : Projectivization K V) : x β Submodule.projectivization s β x.submodule β€ s - Projectivization.Subspace.mk.injEq π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (carrier : Set (Projectivization K V)) (mem_add' : β (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0), Projectivization.mk K v hv β carrier β Projectivization.mk K w hw β carrier β Projectivization.mk K (v + w) hvw β carrier) (carrierβ : Set (Projectivization K V)) (mem_add'β : β (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0), Projectivization.mk K v hv β carrierβ β Projectivization.mk K w hw β carrierβ β Projectivization.mk K (v + w) hvw β carrierβ) : ({ carrier := carrier, mem_add' := mem_add' } = { carrier := carrierβ, mem_add' := mem_add'β }) = (carrier = carrierβ) - Projectivization.Subspace.mk.congr_simp π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (carrier carrierβ : Set (Projectivization K V)) (e_carrier : carrier = carrierβ) (mem_add' : β (v w : V) (hv : v β 0) (hw : w β 0) (hvw : v + w β 0), Projectivization.mk K v hv β carrier β Projectivization.mk K w hw β carrier β Projectivization.mk K (v + w) hvw β carrier) : { carrier := carrier, mem_add' := mem_add' } = { carrier := carrierβ, mem_add' := β― } - Projectivization.lift.congr_simp π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {Ξ± : Type u_3} (f fβ : { v // v β 0 } β Ξ±) (e_f : f = fβ) (hf : β (a b : { v // v β 0 }) (t : K), βa = t β’ βb β f a = f b) (x xβ : Projectivization K V) (e_x : x = xβ) : Projectivization.lift f hf x = Projectivization.lift fβ β― xβ - OnePoint.equivProjectivization π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
(K : Type u_1) [DivisionRing K] [DecidableEq K] : OnePoint K β Projectivization K (K Γ K) - Projectivization.instMulAction.congr_simp π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
{G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] : Projectivization.instMulAction = Projectivization.instMulAction - OnePoint.equivProjectivization_apply_coe π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
(K : Type u_1) [DivisionRing K] [DecidableEq K] (t : K) : (OnePoint.equivProjectivization K) βt = Projectivization.mk K (t, 1) β― - OnePoint.equivProjectivization_apply_infinity π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
(K : Type u_1) [DivisionRing K] [DecidableEq K] : (OnePoint.equivProjectivization K) OnePoint.infty = Projectivization.mk K (1, 0) β― - OnePoint.equivProjectivization_symm_apply_mk π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
(K : Type u_1) [DivisionRing K] [DecidableEq K] (x y : K) (h : (x, y) β 0) : (OnePoint.equivProjectivization K).symm (Projectivization.mk K (x, y) h) = if y = 0 then OnePoint.infty else β(yβ»ΒΉ * x) - OnePoint.equivProjectivization.eq_1 π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
(K : Type u_1) [DivisionRing K] [DecidableEq K] : OnePoint.equivProjectivization K = { toFun := fun p => p.elim (Projectivization.mk K (1, 0) β―) fun t => Projectivization.mk K (t, 1) β―, invFun := fun p => Projectivization.lift (fun u => if (βu).2 = 0 then OnePoint.infty else β((βu).2β»ΒΉ * (βu).1)) β― p, left_inv := β―, right_inv := β― } - OnePoint.smul_infty_def π Mathlib.Topology.Compactification.OnePoint.ProjectiveLine
{K : Type u_1} [Field K] [DecidableEq K] {g : GL (Fin 2) K} : g β’ OnePoint.infty = (OnePoint.equivProjectivization K).symm (Projectivization.mk K (βg 0 0, βg 1 0) β―)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 1047f07