Loogle!
Result
Found 8 declarations mentioning Projectivization.map.
- Projectivization.map_id ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] : Projectivization.map LinearMap.id โฏ = id - Projectivization.map ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {ฯ : K โ+* L} (f : V โโโ[ฯ] W) (hf : Function.Injective โf) : Projectivization K V โ Projectivization L W - Projectivization.map_injective ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {ฯ : K โ+* L} {ฯ : L โ+* K} [RingHomInvPair ฯ ฯ] (f : V โโโ[ฯ] W) (hf : Function.Injective โf) : Function.Injective (Projectivization.map f hf) - Projectivization.map.congr_simp ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {ฯ : K โ+* L} (f fโ : V โโโ[ฯ] W) (e_f : f = fโ) (hf : Function.Injective โf) (aโ aโยน : Projectivization K V) : aโ = aโยน โ Projectivization.map f hf aโ = Projectivization.map fโ โฏ aโยน - Projectivization.map_comp ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {F : Type u_5} {U : Type u_6} [DivisionRing F] [AddCommGroup U] [Module F U] {ฯ : K โ+* L} {ฯ : L โ+* F} {ฮณ : K โ+* F} [RingHomCompTriple ฯ ฯ ฮณ] (f : V โโโ[ฯ] W) (hf : Function.Injective โf) (g : W โโโ[ฯ] U) (hg : Function.Injective โg) (hgf : Function.Injective โ(g โโโ f) := โฏ) : Projectivization.map (g โโโ f) hgf = Projectivization.map g hg โ Projectivization.map f hf - Projectivization.map_mk ๐ Mathlib.LinearAlgebra.Projectivization.Basic
{K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {ฯ : K โ+* L} (f : V โโโ[ฯ] W) (hf : Function.Injective โf) (v : V) (hv : v โ 0) : Projectivization.map f hf (Projectivization.mk K v hv) = Projectivization.mk L (f v) โฏ - Projectivization.smul_def ๐ Mathlib.LinearAlgebra.Projectivization.Action
{G : Type u_1} {K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] [Group G] [DistribMulAction G V] [SMulCommClass G K V] (g : G) (x : Projectivization K V) : SMul.smul g x = Projectivization.map ((DistribMulAction.toModuleEnd K V) g) โฏ x - Projectivization.generalLinearGroup_smul_def ๐ Mathlib.LinearAlgebra.Projectivization.Action
{K : Type u_2} {V : Type u_3} [AddCommGroup V] [DivisionRing K] [Module K V] (g : LinearMap.GeneralLinearGroup K V) (x : Projectivization K V) : g โข x = Projectivization.map โg.toLinearEquiv โฏ x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177