Loogle!
Result
Found 7 declarations mentioning ProperCone.map.
- ProperCone.map_id 📋 Mathlib.Analysis.Convex.Cone.Basic
{R : Type u_1} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid F] [TopologicalSpace F] [Module R F] [ContinuousAdd F] [ContinuousConstSMul R F] (C : ProperCone R F) : ProperCone.map (ContinuousLinearMap.id R F) C = C - ProperCone.map 📋 Mathlib.Analysis.Convex.Cone.Basic
{R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid E] [TopologicalSpace E] [Module R E] [AddCommMonoid F] [TopologicalSpace F] [Module R F] [ContinuousAdd F] [ContinuousConstSMul R F] (f : E →L[R] F) (C : ProperCone R E) : ProperCone R F - ProperCone.coe_map 📋 Mathlib.Analysis.Convex.Cone.Basic
{R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid E] [TopologicalSpace E] [Module R E] [AddCommMonoid F] [TopologicalSpace F] [Module R F] [ContinuousAdd F] [ContinuousConstSMul R F] (f : E →L[R] F) (C : ProperCone R E) : ↑(ProperCone.map f C) = (PointedCone.map ↑f ↑C).closure - ProperCone.mem_map 📋 Mathlib.Analysis.Convex.Cone.Basic
{R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [PartialOrder R] [IsOrderedRing R] [AddCommMonoid E] [TopologicalSpace E] [Module R E] [AddCommMonoid F] [TopologicalSpace F] [Module R F] [ContinuousAdd F] [ContinuousConstSMul R F] {f : E →L[R] F} {C : ProperCone R E} {y : F} : y ∈ ProperCone.map f C ↔ y ∈ (PointedCone.map ↑f ↑C).closure - ProperCone.hyperplane_separation 📋 Mathlib.Analysis.Convex.Cone.InnerDual
{H : Type u_1} [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace ℝ F] [CompleteSpace F] (K : ProperCone ℝ H) {f : H →L[ℝ] F} {b : F} : b ∈ ProperCone.map f K ↔ ∀ (y : F), (ContinuousLinearMap.adjoint f) y ∈ K.dual → 0 ≤ inner ℝ y b - ProperCone.hyperplane_separation_of_nmem 📋 Mathlib.Analysis.Convex.Cone.InnerDual
{H : Type u_1} [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace ℝ F] [CompleteSpace F] (K : ProperCone ℝ H) {f : H →L[ℝ] F} {b : F} (disj : b ∉ ProperCone.map f K) : ∃ y, (ContinuousLinearMap.adjoint f) y ∈ K.dual ∧ inner ℝ y b < 0 - ProperCone.hyperplane_separation_of_notMem 📋 Mathlib.Analysis.Convex.Cone.InnerDual
{H : Type u_1} [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] {F : Type u_2} [NormedAddCommGroup F] [InnerProductSpace ℝ F] [CompleteSpace F] (K : ProperCone ℝ H) {f : H →L[ℝ] F} {b : F} (disj : b ∉ ProperCone.map f K) : ∃ y, (ContinuousLinearMap.adjoint f) y ∈ K.dual ∧ inner ℝ y b < 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 2c2d6a2
serving mathlib revision ede29a3