Loogle!
Result
Found 8 declarations mentioning Quot.map.
- Quot.map 📋 Mathlib.Data.Quot
{α : Sort u_1} {β : Sort u_2} {ra : α → α → Prop} {rb : β → β → Prop} (f : α → β) (h : ∀ ⦃a b : α⦄, ra a b → rb (f a) (f b)) : Quot ra → Quot rb - Quot.map.eq_1 📋 Mathlib.Logic.Equiv.Defs
{α : Sort u_1} {β : Sort u_2} {ra : α → α → Prop} {rb : β → β → Prop} (f : α → β) (h : ∀ ⦃a b : α⦄, ra a b → rb (f a) (f b)) : Quot.map f h = Quot.lift (fun x => Quot.mk rb (f x)) ⋯ - FreeAddGroup.instNeg.eq_1 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} : FreeAddGroup.instNeg = { neg := Quot.map FreeAddGroup.negRev ⋯ } - FreeGroup.instInv.eq_1 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} : FreeGroup.instInv = { inv := Quot.map FreeGroup.invRev ⋯ } - FreeAddGroup.quot_map_mk 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool) → List (β × Bool)) (H : Relator.LiftFun FreeAddGroup.Red.Step FreeAddGroup.Red.Step f f) : Quot.map f H (FreeAddGroup.mk L) = FreeAddGroup.mk (f L) - FreeGroup.quot_map_mk 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} {L : List (α × Bool)} (β : Type v) (f : List (α × Bool) → List (β × Bool)) (H : Relator.LiftFun FreeGroup.Red.Step FreeGroup.Red.Step f f) : Quot.map f H (FreeGroup.mk L) = FreeGroup.mk (f L) - FreeAddGroup.map.eq_1 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} {β : Type v} (f : α → β) : FreeAddGroup.map f = AddMonoidHom.mk' (Quot.map (List.map fun x => (f x.1, x.2)) ⋯) ⋯ - FreeGroup.map.eq_1 📋 Mathlib.GroupTheory.FreeGroup.Basic
{α : Type u} {β : Type v} (f : α → β) : FreeGroup.map f = MonoidHom.mk' (Quot.map (List.map fun x => (f x.1, x.2)) ⋯) ⋯
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65