Loogle!
Result
Found 8 declarations mentioning Quotient.map.
- Quotient.map 📋 Mathlib.Data.Quot
{α : Sort u_1} {β : Sort u_2} {sa : Setoid α} {sb : Setoid β} (f : α → β) (h : ∀ ⦃a b : α⦄, a ≈ b → f a ≈ f b) : Quotient sa → Quotient sb - Quotient.map_mk 📋 Mathlib.Data.Quot
{α : Sort u_1} {β : Sort u_2} {sa : Setoid α} {sb : Setoid β} (f : α → β) (h : ∀ ⦃a b : α⦄, a ≈ b → f a ≈ f b) (x : α) : Quotient.map f h ⟦x⟧ = ⟦f x⟧ - SMulCon.instSMulQuotient.eq_1 📋 Mathlib.Algebra.Module.Congruence.Defs
{S : Type u_2} (M : Type u_3) [SMul S M] (c : SMulCon S M) : SMulCon.instSMulQuotient M c = { smul := fun s => Quotient.map (fun x => s • x) ⋯ } - VAddCon.instVAddQuotient.eq_1 📋 Mathlib.Algebra.Module.Congruence.Defs
{S : Type u_2} (M : Type u_3) [VAdd S M] (c : VAddCon S M) : VAddCon.instVAddQuotient M c = { vadd := fun s => Quotient.map (fun x => s +ᵥ x) ⋯ } - Quotient.map.congr_simp 📋 Mathlib.Data.Fintype.Quotient
{α : Sort u_1} {β : Sort u_2} {sa : Setoid α} {sb : Setoid β} (f f✝ : α → β) (e_f : f = f✝) (h : ∀ ⦃a b : α⦄, a ≈ b → f a ≈ f b) (a✝ a✝¹ : Quotient sa) : a✝ = a✝¹ → Quotient.map f h a✝ = Quotient.map f✝ ⋯ a✝¹ - CategoryTheory.ThinSkeleton.map_obj 📋 Mathlib.CategoryTheory.Skeletal
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) (a✝ : Quotient (CategoryTheory.isIsomorphicSetoid C)) : (CategoryTheory.ThinSkeleton.map F).obj a✝ = Quotient.map F.obj ⋯ a✝ - CategoryTheory.ThinSkeleton.map_map 📋 Mathlib.CategoryTheory.Skeletal
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X Y : CategoryTheory.ThinSkeleton C} (a✝ : X ⟶ Y) : (CategoryTheory.ThinSkeleton.map F).map a✝ = Quotient.recOnSubsingleton₂ (motive := fun x x_1 => (x ⟶ x_1) → (Quotient.map F.obj ⋯ x ⟶ Quotient.map F.obj ⋯ x_1)) X Y (fun x x_1 k => CategoryTheory.homOfLE ⋯) a✝ - Path.Homotopic.pi.eq_1 📋 Mathlib.Topology.Homotopy.Product
{ι : Type u_1} {X : ι → Type u_2} [(i : ι) → TopologicalSpace (X i)] {as bs : (i : ι) → X i} (γ : (i : ι) → Path.Homotopic.Quotient (as i) (bs i)) : Path.Homotopic.pi γ = Quotient.map Path.pi ⋯ (Quotient.choice γ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c