Loogle!
Result
Found 16 declarations mentioning QuotientGroup.map.
- QuotientGroup.map 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) : G ⧸ N →* H ⧸ M - QuotientGroup.ker_map 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) : (QuotientGroup.map N M f h).ker = Subgroup.map (QuotientGroup.mk' N) (Subgroup.comap f M) - QuotientGroup.map_id 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N ≤ Subgroup.comap (MonoidHom.id G) N := ⋯) : QuotientGroup.map N N (MonoidHom.id G) h = MonoidHom.id (G ⧸ N) - QuotientGroup.map.eq_1 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) : QuotientGroup.map N M f h = QuotientGroup.lift N ((QuotientGroup.mk' M).comp f) ⋯ - QuotientGroup.map_id_apply 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N ≤ Subgroup.comap (MonoidHom.id G) N := ⋯) (x : G ⧸ N) : (QuotientGroup.map N N (MonoidHom.id G) h) x = x - QuotientGroup.map_mk 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) (x : G) : (QuotientGroup.map N M f h) ↑x = ↑(f x) - QuotientGroup.map_surjective_of_surjective 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (hf : Function.Surjective (QuotientGroup.mk ∘ ⇑f)) (h : N ≤ Subgroup.comap f M) : Function.Surjective ⇑(QuotientGroup.map N M f h) - QuotientGroup.map_mk' 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N ≤ Subgroup.comap f M) (x : G) : (QuotientGroup.map N M f h) ((QuotientGroup.mk' N) x) = ↑(f x) - QuotientGroup.map_comp_map 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N ≤ Subgroup.comap f M) (hg : M ≤ Subgroup.comap g O) (hgf : N ≤ Subgroup.comap (g.comp f) O := ⋯) : (QuotientGroup.map M O g hg).comp (QuotientGroup.map N M f hf) = QuotientGroup.map N O (g.comp f) hgf - QuotientGroup.map_map 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N ≤ Subgroup.comap f M) (hg : M ≤ Subgroup.comap g O) (hgf : N ≤ Subgroup.comap (g.comp f) O := ⋯) (x : G ⧸ N) : (QuotientGroup.map M O g hg) ((QuotientGroup.map N M f hf) x) = (QuotientGroup.map N O (g.comp f) hgf) x - QuotientGroup.congr.eq_1 📋 Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') : QuotientGroup.congr G' H' e he = { toFun := ⇑(QuotientGroup.map G' H' ↑e ⋯), invFun := ⇑(QuotientGroup.map H' G' ↑e.symm ⋯), left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯ } - QuotientGroup.quotientQuotientEquivQuotientAux.eq_1 📋 Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N ≤ M) : QuotientGroup.quotientQuotientEquivQuotientAux N M h = QuotientGroup.lift (Subgroup.map (QuotientGroup.mk' N) M) (QuotientGroup.map N M (MonoidHom.id G) h) ⋯ - QuotientGroup.quotientMapSubgroupOfOfLe.eq_1 📋 Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] {A' A B' B : Subgroup G} [_hAN : (A'.subgroupOf A).Normal] [_hBN : (B'.subgroupOf B).Normal] (h' : A' ≤ B') (h : A ≤ B) : QuotientGroup.quotientMapSubgroupOfOfLe h' h = QuotientGroup.map (A'.subgroupOf A) (B'.subgroupOf B) (Subgroup.inclusion h) ⋯ - QuotientGroup.quotientQuotientEquivQuotient.eq_1 📋 Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N ≤ M) : QuotientGroup.quotientQuotientEquivQuotient N M h = (QuotientGroup.quotientQuotientEquivQuotientAux N M h).toMulEquiv (QuotientGroup.map M (Subgroup.map (QuotientGroup.mk' N) M) (QuotientGroup.mk' N) ⋯) ⋯ ⋯ - QuotientGroup.quotientQuotientEquivQuotientAux_mk 📋 Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N ≤ M) (x : G ⧸ N) : (QuotientGroup.quotientQuotientEquivQuotientAux N M h) ↑x = (QuotientGroup.map N M (MonoidHom.id G) h) x - IsDedekindDomain.HeightOneSpectrum.valuationOfNeZeroMod.eq_1 📋 Mathlib.RingTheory.DedekindDomain.SelmerGroup
{R : Type u} [CommRing R] [IsDedekindDomain R] {K : Type v} [Field K] [Algebra R K] [IsFractionRing R K] (v : IsDedekindDomain.HeightOneSpectrum R) (n : ℕ) : v.valuationOfNeZeroMod n = (AddEquiv.toMultiplicative (Int.quotientZMultiplesNatEquivZMod n)).toMonoidHom.comp (QuotientGroup.map (powMonoidHom n).range (AddSubgroup.toSubgroup (AddSubgroup.zmultiples ↑n)) v.valuationOfNeZero ⋯)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65