Loogle!
Result
Found 9 declarations mentioning RatFunc.map.
- RatFunc.map 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [MonoidHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) : RatFunc R →* RatFunc S - RatFunc.map_injective 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [MonoidHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) (hf : Function.Injective ⇑φ) : Function.Injective ⇑(RatFunc.map φ hφ) - RatFunc.coe_mapRingHom_eq_coe_map 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [RingHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) : ⇑(RatFunc.mapRingHom φ hφ) = ⇑(RatFunc.map φ hφ) - RatFunc.map_apply 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [Field K] {R : Type u_1} {F : Type u_2} [CommRing R] [IsDomain R] [FunLike F (Polynomial K) (Polynomial R)] [MonoidHomClass F (Polynomial K) (Polynomial R)] (φ : F) (hφ : nonZeroDivisors (Polynomial K) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial R))) (f : RatFunc K) : (RatFunc.map φ hφ) f = (algebraMap (Polynomial R) (RatFunc R)) (φ f.num) / (algebraMap (Polynomial R) (RatFunc R)) (φ f.denom) - RatFunc.map_apply_div_ne_zero 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] [IsDomain K] {R : Type u_1} {F : Type u_2} [CommRing R] [IsDomain R] [FunLike F (Polynomial K) (Polynomial R)] [MonoidHomClass F (Polynomial K) (Polynomial R)] (φ : F) (hφ : nonZeroDivisors (Polynomial K) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial R))) (p q : Polynomial K) (hq : q ≠ 0) : (RatFunc.map φ hφ) ((algebraMap (Polynomial K) (RatFunc K)) p / (algebraMap (Polynomial K) (RatFunc K)) q) = (algebraMap (Polynomial R) (RatFunc R)) (φ p) / (algebraMap (Polynomial R) (RatFunc R)) (φ q) - RatFunc.map_apply_div 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] [IsDomain K] {R : Type u_1} {F : Type u_2} [CommRing R] [IsDomain R] [FunLike F (Polynomial K) (Polynomial R)] [MonoidWithZeroHomClass F (Polynomial K) (Polynomial R)] (φ : F) (hφ : nonZeroDivisors (Polynomial K) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial R))) (p q : Polynomial K) : (RatFunc.map φ hφ) ((algebraMap (Polynomial K) (RatFunc K)) p / (algebraMap (Polynomial K) (RatFunc K)) q) = (algebraMap (Polynomial R) (RatFunc R)) (φ p) / (algebraMap (Polynomial R) (RatFunc R)) (φ q) - RatFunc.coe_mapAlgHom_eq_coe_map 📋 Mathlib.FieldTheory.RatFunc.Basic
{K : Type u} [CommRing K] [IsDomain K] {R : Type u_2} {S : Type u_3} [CommRing R] [IsDomain R] [CommSemiring S] [Algebra S (Polynomial K)] [Algebra S (Polynomial R)] (φ : Polynomial K →ₐ[S] Polynomial R) (hφ : nonZeroDivisors (Polynomial K) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial R))) : ⇑(RatFunc.mapAlgHom φ hφ) = ⇑(RatFunc.map φ hφ) - RatFunc.map_apply_ofFractionRing_mk 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [MonoidHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) (n : Polynomial R) (d : ↥(nonZeroDivisors (Polynomial R))) : (RatFunc.map φ hφ) { toFractionRing := Localization.mk n d } = { toFractionRing := Localization.mk (φ n) ⟨φ ↑d, ⋯⟩ } - RatFunc.map.eq_1 📋 Mathlib.FieldTheory.RatFunc.Basic
{R : Type u_3} {S : Type u_4} {F : Type u_5} [CommRing R] [CommRing S] [FunLike F (Polynomial R) (Polynomial S)] [MonoidHomClass F (Polynomial R) (Polynomial S)] (φ : F) (hφ : nonZeroDivisors (Polynomial R) ≤ Submonoid.comap φ (nonZeroDivisors (Polynomial S))) : RatFunc.map φ hφ = { toFun := fun f => f.liftOn (fun n d => if h : φ d ∈ nonZeroDivisors (Polynomial S) then { toFractionRing := Localization.mk (φ n) ⟨φ d, h⟩ } else 0) ⋯, map_one' := ⋯, map_mul' := ⋯ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65