Loogle!
Result
Found 1342 declarations mentioning Real.pi. Of these, only the first 200 are shown.
- Real.pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: β - NNReal.coe_real_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: βNNReal.pi = Real.pi - Real.tan_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Real.tan Real.pi - Complex.tan_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Complex.tan βReal.pi - Real.cos_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic Real.cos Real.pi - Real.sin_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic Real.sin Real.pi - Complex.cos_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic Complex.cos βReal.pi - Complex.sin_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic Complex.sin βReal.pi - Real.pi_ne_zero π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.pi β 0 - Real.pi_nonneg π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 0 β€ Real.pi - Real.pi_pos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 0 < Real.pi - Real.sin_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.sin Real.pi = 0 - Real.tan_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.tan Real.pi = 0 - Complex.sin_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.sin βReal.pi = 0 - Real.cos_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.cos Real.pi = -1 - Complex.cos_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.cos βReal.pi = -1 - Real.injOn_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Set.InjOn Real.cos (Set.Icc 0 Real.pi) - Real.sin_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (Real.pi - x) = Real.sin x - Real.tan_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.tan (x + Real.pi) = Real.tan x - Real.tan_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.tan (x - Real.pi) = Real.tan x - Complex.exp_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic Complex.exp (βReal.pi * Complex.I) - Complex.sin_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (βReal.pi - x) = Complex.sin x - Complex.tan_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.tan (x + βReal.pi) = Complex.tan x - Complex.tan_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.tan (x - βReal.pi) = Complex.tan x - Real.antitoneOn_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: AntitoneOn Real.cos (Set.Icc 0 Real.pi) - Real.strictAntiOn_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: StrictAntiOn Real.cos (Set.Icc 0 Real.pi) - Complex.exp_mul_I_antiperiodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Antiperiodic (fun x => Complex.exp (x * Complex.I)) βReal.pi - Real.cos_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x + Real.pi) = -Real.cos x - Real.cos_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (Real.pi - x) = -Real.cos x - Real.cos_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x - Real.pi) = -Real.cos x - Real.sin_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x + Real.pi) = -Real.sin x - Real.sin_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x - Real.pi) = -Real.sin x - Real.tan_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.tan (Real.pi - x) = -Real.tan x - Complex.cos_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x + βReal.pi) = -Complex.cos x - Complex.cos_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (βReal.pi - x) = -Complex.cos x - Complex.cos_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x - βReal.pi) = -Complex.cos x - Complex.sin_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x + βReal.pi) = -Complex.sin x - Complex.sin_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x - βReal.pi) = -Complex.sin x - Complex.tan_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.tan (βReal.pi - x) = -Complex.tan x - Complex.exp_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.exp (βReal.pi * Complex.I) = -1 - Real.sin_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.sin (βn * Real.pi) = 0 - Real.sin_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.sin (βn * Real.pi) = 0 - Real.tan_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.tan (βn * Real.pi) = 0 - Real.tan_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.tan (βn * Real.pi) = 0 - Complex.sin_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.sin (βn * βReal.pi) = 0 - Complex.sin_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.sin (βn * βReal.pi) = 0 - Complex.tan_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.tan (βn * βReal.pi) = 0 - Complex.tan_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.tan (βn * βReal.pi) = 0 - Real.pi_le_four π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.pi β€ 4 - Real.two_le_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 2 β€ Real.pi - Real.abs_sin_eq_sin_abs_of_abs_le_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx : |x| β€ Real.pi) : |Real.sin x| = Real.sin |x| - Real.abs_cos_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(k : β€) : |Real.cos (βk * Real.pi)| = 1 - Complex.exp_add_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(z : β) : Complex.exp (z + βReal.pi * Complex.I) = -Complex.exp z - Complex.exp_sub_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(z : β) : Complex.exp (z - βReal.pi * Complex.I) = -Complex.exp z - Real.sin_nonneg_of_nonneg_of_le_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (h0x : 0 β€ x) (hxp : x β€ Real.pi) : 0 β€ Real.sin x - Real.sin_pos_of_pos_of_lt_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (h0x : 0 < x) (hxp : x < Real.pi) : 0 < Real.sin x - Real.tan_add_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.tan (x + βn * Real.pi) = Real.tan x - Real.tan_add_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.tan (x + βn * Real.pi) = Real.tan x - Real.tan_sub_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.tan (x - βn * Real.pi) = Real.tan x - Real.tan_sub_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.tan (x - βn * Real.pi) = Real.tan x - Complex.tan_add_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.tan (x + βn * βReal.pi) = Complex.tan x - Complex.tan_add_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.tan (x + βn * βReal.pi) = Complex.tan x - Complex.tan_sub_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.tan (x - βn * βReal.pi) = Complex.tan x - Complex.tan_sub_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.tan (x - βn * βReal.pi) = Complex.tan x - Real.sin_ne_zero_iff π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} : Real.sin x β 0 β β (n : β€), βn * Real.pi β x - Real.cos_le_cos_of_nonneg_of_le_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : β} (hxβ : 0 β€ x) (hyβ : y β€ Real.pi) (hxy : x β€ y) : Real.cos y β€ Real.cos x - Real.cos_lt_cos_of_nonneg_of_le_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : β} (hxβ : 0 β€ x) (hyβ : y β€ Real.pi) (hxy : x < y) : Real.cos y < Real.cos x - Real.sin_nonneg_of_mem_Icc π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx : x β Set.Icc 0 Real.pi) : 0 β€ Real.sin x - Real.sin_pos_of_mem_Ioo π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx : x β Set.Ioo 0 Real.pi) : 0 < Real.sin x - Real.sin_eq_zero_iff π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} : Real.sin x = 0 β β n, βn * Real.pi = x - Real.sin_neg_of_neg_of_neg_pi_lt π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx0 : x < 0) (hpx : -Real.pi < x) : Real.sin x < 0 - Real.sin_nonpos_of_nonnpos_of_neg_pi_le π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx0 : x β€ 0) (hpx : -Real.pi β€ x) : Real.sin x β€ 0 - Real.sin_nonpos_of_nonpos_of_neg_pi_le π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx0 : x β€ 0) (hpx : -Real.pi β€ x) : Real.sin x β€ 0 - Real.tan_int_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.tan (βn * Real.pi - x) = -Real.tan x - Real.tan_nat_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.tan (βn * Real.pi - x) = -Real.tan x - Complex.tan_int_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.tan (βn * βReal.pi - x) = -Complex.tan x - Complex.tan_nat_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.tan (βn * βReal.pi - x) = -Complex.tan x - Real.bijOn_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Set.BijOn Real.cos (Set.Icc 0 Real.pi) (Set.Icc (-1) 1) - Real.cos_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Real.cos (2 * Real.pi) - Real.sin_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Real.sin (2 * Real.pi) - Real.surjOn_cos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Set.SurjOn Real.cos (Set.Icc 0 Real.pi) (Set.Icc (-1) 1) - Complex.cos_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Complex.cos (2 * βReal.pi) - Complex.sin_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Complex.sin (2 * βReal.pi) - Real.sin_eq_zero_iff_of_lt_of_lt π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hxβ : -Real.pi < x) (hxβ : x < Real.pi) : Real.sin x = 0 β x = 0 - Real.cos_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.cos (βn * Real.pi) = (-1) ^ n - Real.cos_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.cos (βn * Real.pi) = (-1) ^ n - Real.cos_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.cos (2 * Real.pi) = 1 - Real.sin_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.sin (2 * Real.pi) = 0 - Real.two_pi_pos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 0 < 2 * Real.pi - Complex.cos_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.cos (2 * βReal.pi) = 1 - Complex.sin_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.sin (2 * βReal.pi) = 0 - Real.cos_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.cos (Real.pi / 2) = 0 - Real.one_le_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 1 β€ Real.pi / 2 - Real.pi_div_two_pos π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: 0 < Real.pi / 2 - Real.sin_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.sin (Real.pi / 2) = 1 - Real.tan_pi_div_four π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.tan (Real.pi / 4) = 1 - Real.tan_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.tan (Real.pi / 2) = 0 - Complex.cos_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.cos (βReal.pi / 2) = 0 - Complex.sin_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.sin (βReal.pi / 2) = 1 - Complex.exp_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic Complex.exp (2 * βReal.pi * Complex.I) - Real.cos_add_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x + 2 * Real.pi) = Real.cos x - Real.cos_sub_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x - 2 * Real.pi) = Real.cos x - Real.cos_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (2 * Real.pi - x) = Real.cos x - Real.sin_add_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x + 2 * Real.pi) = Real.sin x - Real.sin_sub_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x - 2 * Real.pi) = Real.sin x - Complex.cos_add_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x + 2 * βReal.pi) = Complex.cos x - Complex.cos_sub_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x - 2 * βReal.pi) = Complex.cos x - Complex.cos_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (2 * βReal.pi - x) = Complex.cos x - Complex.exp_pi_div_two_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.exp (βReal.pi / 2 * Complex.I) = Complex.I - Complex.sin_add_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x + 2 * βReal.pi) = Complex.sin x - Complex.sin_sub_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x - 2 * βReal.pi) = Complex.sin x - Complex.exp_mul_I_periodic π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Function.Periodic (fun x => Complex.exp (x * Complex.I)) (2 * βReal.pi) - Real.cos_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (Real.pi / 2 - x) = Real.sin x - Real.cos_sub_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x - Real.pi / 2) = Real.sin x - Real.sin_add_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x + Real.pi / 2) = Real.cos x - Real.sin_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (Real.pi / 2 - x) = Real.cos x - Complex.cos_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (βReal.pi / 2 - x) = Complex.sin x - Complex.cos_sub_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x - βReal.pi / 2) = Complex.sin x - Complex.sin_add_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x + βReal.pi / 2) = Complex.cos x - Complex.sin_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (βReal.pi / 2 - x) = Complex.cos x - Real.sin_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (2 * Real.pi - x) = -Real.sin x - Complex.exp_two_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.exp (2 * βReal.pi * Complex.I) = 1 - Complex.sin_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (2 * βReal.pi - x) = -Complex.sin x - Real.cos_add_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos (x + Real.pi / 2) = -Real.sin x - Real.sin_sub_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.sin (x - Real.pi / 2) = -Real.cos x - Real.tan_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.tan (Real.pi / 2 - x) = (Real.tan x)β»ΒΉ - Complex.cos_add_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.cos (x + βReal.pi / 2) = -Complex.sin x - Complex.sin_sub_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.sin (x - βReal.pi / 2) = -Complex.cos x - Complex.tan_pi_div_two_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Complex.tan (βReal.pi / 2 - x) = (Complex.tan x)β»ΒΉ - Complex.exp_neg_pi_div_two_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Complex.exp (-βReal.pi / 2 * Complex.I) = -Complex.I - Real.cos_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.cos (βn * (2 * Real.pi)) = 1 - Real.cos_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.cos (βn * (2 * Real.pi)) = 1 - Complex.cos_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.cos (βn * (2 * βReal.pi)) = 1 - Complex.cos_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.cos (βn * (2 * βReal.pi)) = 1 - Real.pi_div_two_le_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.pi / 2 β€ 2 - Real.sin_eq_sqrt_one_sub_cos_sq π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hl : 0 β€ x) (hu : x β€ Real.pi) : Real.sin x = β(1 - Real.cos x ^ 2) - Real.tan_pi_div_three π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.tan (Real.pi / 3) = β3 - Real.cos_add_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (x + βn * (2 * Real.pi)) = Real.cos x - Real.cos_add_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (x + βn * (2 * Real.pi)) = Real.cos x - Real.cos_int_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (βn * (2 * Real.pi) - x) = Real.cos x - Real.cos_nat_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (βn * (2 * Real.pi) - x) = Real.cos x - Real.cos_sub_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (x - βn * (2 * Real.pi)) = Real.cos x - Real.cos_sub_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (x - βn * (2 * Real.pi)) = Real.cos x - Real.sin_add_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (x + βn * (2 * Real.pi)) = Real.sin x - Real.sin_add_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (x + βn * (2 * Real.pi)) = Real.sin x - Real.sin_sub_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (x - βn * (2 * Real.pi)) = Real.sin x - Real.sin_sub_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (x - βn * (2 * Real.pi)) = Real.sin x - Complex.cos_add_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.cos (x + βn * (2 * βReal.pi)) = Complex.cos x - Complex.cos_add_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.cos (x + βn * (2 * βReal.pi)) = Complex.cos x - Complex.cos_int_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.cos (βn * (2 * βReal.pi) - x) = Complex.cos x - Complex.cos_nat_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.cos (βn * (2 * βReal.pi) - x) = Complex.cos x - Complex.cos_sub_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.cos (x - βn * (2 * βReal.pi)) = Complex.cos x - Complex.cos_sub_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.cos (x - βn * (2 * βReal.pi)) = Complex.cos x - Complex.sin_add_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.sin (x + βn * (2 * βReal.pi)) = Complex.sin x - Complex.sin_add_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.sin (x + βn * (2 * βReal.pi)) = Complex.sin x - Complex.sin_sub_int_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.sin (x - βn * (2 * βReal.pi)) = Complex.sin x - Complex.sin_sub_nat_mul_two_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.sin (x - βn * (2 * βReal.pi)) = Complex.sin x - Real.cos_add_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (x + βn * Real.pi) = (-1) ^ n * Real.cos x - Real.cos_add_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (x + βn * Real.pi) = (-1) ^ n * Real.cos x - Real.cos_int_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (βn * Real.pi - x) = (-1) ^ n * Real.cos x - Real.cos_nat_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (βn * Real.pi - x) = (-1) ^ n * Real.cos x - Real.cos_sub_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.cos (x - βn * Real.pi) = (-1) ^ n * Real.cos x - Real.cos_sub_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.cos (x - βn * Real.pi) = (-1) ^ n * Real.cos x - Real.sin_add_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (x + βn * Real.pi) = (-1) ^ n * Real.sin x - Real.sin_add_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (x + βn * Real.pi) = (-1) ^ n * Real.sin x - Real.sin_sub_int_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (x - βn * Real.pi) = (-1) ^ n * Real.sin x - Real.sin_sub_nat_mul_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (x - βn * Real.pi) = (-1) ^ n * Real.sin x - Real.tan_nonneg_of_nonneg_of_le_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (h0x : 0 β€ x) (hxp : x β€ Real.pi / 2) : 0 β€ Real.tan x - Real.tan_pos_of_pos_of_lt_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (h0x : 0 < x) (hxp : x < Real.pi / 2) : 0 < Real.tan x - Real.cos_eq_one_iff π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) : Real.cos x = 1 β β n, βn * (2 * Real.pi) = x - Real.sin_int_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (βn * (2 * Real.pi) - x) = -Real.sin x - Real.sin_nat_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (βn * (2 * Real.pi) - x) = -Real.sin x - Complex.exp_int_mul_two_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.exp (βn * (2 * βReal.pi * Complex.I)) = 1 - Complex.exp_nat_mul_two_pi_mul_I π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.exp (βn * (2 * βReal.pi * Complex.I)) = 1 - Complex.sin_int_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Complex.sin (βn * (2 * βReal.pi) - x) = -Complex.sin x - Complex.sin_nat_mul_two_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Complex.sin (βn * (2 * βReal.pi) - x) = -Complex.sin x - Real.cos_lt_cos_of_nonneg_of_le_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : β} (hxβ : 0 β€ x) (hyβ : y β€ Real.pi / 2) (hxy : x < y) : Real.cos y < Real.cos x - Real.sin_int_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β€) : Real.sin (βn * Real.pi - x) = -((-1) ^ n * Real.sin x) - Real.sin_nat_mul_pi_sub π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(x : β) (n : β) : Real.sin (βn * Real.pi - x) = -((-1) ^ n * Real.sin x) - Real.tan_lt_tan_of_nonneg_of_lt_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : β} (hxβ : 0 β€ x) (hyβ : y < Real.pi / 2) (hxy : x < y) : Real.tan x < Real.tan y - Real.pi.eq_1 π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.pi = 2 * Classical.choose Real.exists_cos_eq_zero - Real.tan_neg_of_neg_of_pi_div_two_lt π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx0 : x < 0) (hpx : -(Real.pi / 2) < x) : Real.tan x < 0 - Real.tan_nonpos_of_nonpos_of_neg_pi_div_two_le π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : β} (hx0 : x β€ 0) (hpx : -(Real.pi / 2) β€ x) : Real.tan x β€ 0 - Real.cos_int_mul_two_pi_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.cos (βn * (2 * Real.pi) + Real.pi) = -1 - Real.cos_int_mul_two_pi_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Real.cos (βn * (2 * Real.pi) - Real.pi) = -1 - Real.cos_nat_mul_two_pi_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.cos (βn * (2 * Real.pi) + Real.pi) = -1 - Real.cos_nat_mul_two_pi_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Real.cos (βn * (2 * Real.pi) - Real.pi) = -1 - Complex.cos_int_mul_two_pi_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.cos (βn * (2 * βReal.pi) + βReal.pi) = -1 - Complex.cos_int_mul_two_pi_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β€) : Complex.cos (βn * (2 * βReal.pi) - βReal.pi) = -1 - Complex.cos_nat_mul_two_pi_add_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.cos (βn * (2 * βReal.pi) + βReal.pi) = -1 - Complex.cos_nat_mul_two_pi_sub_pi π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
(n : β) : Complex.cos (βn * (2 * βReal.pi) - βReal.pi) = -1 - Real.cos_pi_div_three π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.cos (Real.pi / 3) = 1 / 2 - Real.sin_pi_div_six π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.sin (Real.pi / 6) = 1 / 2 - Real.tan_pi_div_six π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Real.tan (Real.pi / 6) = 1 / β3 - Real.injOn_sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Set.InjOn Real.sin (Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) - Real.injOn_tan π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Set.InjOn Real.tan (Set.Ioo (-(Real.pi / 2)) (Real.pi / 2)) - Real.monotoneOn_sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: MonotoneOn Real.sin (Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) - Real.strictMonoOn_sin π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: StrictMonoOn Real.sin (Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) - Real.strictMonoOn_tan π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: StrictMonoOn Real.tan (Set.Ioo (-(Real.pi / 2)) (Real.pi / 2)) - Real.tendsto_tan_pi_div_two π Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
: Filter.Tendsto Real.tan (nhdsWithin (Real.pi / 2) (Set.Iio (Real.pi / 2))) Filter.atTop
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 76f94b4