Loogle!
Result
Found 38 declarations mentioning LE.le, OfNat.ofNat, and Real.sin. Of these, 28 match your pattern(s).
- Real.sin_le_one 📋 Mathlib.Analysis.Complex.Trigonometric
(x : ℝ) : Real.sin x ≤ 1 - Real.neg_one_le_sin 📋 Mathlib.Analysis.Complex.Trigonometric
(x : ℝ) : -1 ≤ Real.sin x - Real.abs_sin_le_one 📋 Mathlib.Analysis.Complex.Trigonometric
(x : ℝ) : |Real.sin x| ≤ 1 - Real.sin_sq_le_one 📋 Mathlib.Analysis.Complex.Trigonometric
(x : ℝ) : Real.sin x ^ 2 ≤ 1 - Real.sin_pos_of_pos_of_le_one 📋 Mathlib.Analysis.Complex.Trigonometric
{x : ℝ} (hx0 : 0 < x) (hx : x ≤ 1) : 0 < Real.sin x - Real.sin_pos_of_pos_of_le_two 📋 Mathlib.Analysis.Complex.Trigonometric
{x : ℝ} (hx0 : 0 < x) (hx : x ≤ 2) : 0 < Real.sin x - Real.sin_bound 📋 Mathlib.Analysis.Complex.Trigonometric
{x : ℝ} (hx : |x| ≤ 1) : |Real.sin x - (x - x ^ 3 / 6)| ≤ |x| ^ 4 * (5 / 96) - Real.sin_eq_sqrt_one_sub_cos_sq 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : ℝ} (hl : 0 ≤ x) (hu : x ≤ Real.pi) : Real.sin x = √(1 - Real.cos x ^ 2) - Real.sin_le_sin_of_le_of_le_pi_div_two 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : ℝ} (hx₁ : -(Real.pi / 2) ≤ x) (hy₂ : y ≤ Real.pi / 2) (hxy : x ≤ y) : Real.sin x ≤ Real.sin y - Real.sin_lt_sin_of_lt_of_le_pi_div_two 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x y : ℝ} (hx₁ : -(Real.pi / 2) ≤ x) (hy₂ : y ≤ Real.pi / 2) (hxy : x < y) : Real.sin x < Real.sin y - Real.cos_eq_sqrt_one_sub_sin_sq 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : ℝ} (hl : -(Real.pi / 2) ≤ x) (hu : x ≤ Real.pi / 2) : Real.cos x = √(1 - Real.sin x ^ 2) - Real.sin_half_eq_sqrt 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : ℝ} (hl : 0 ≤ x) (hr : x ≤ 2 * Real.pi) : Real.sin (x / 2) = √((1 - Real.cos x) / 2) - Real.sin_half_eq_neg_sqrt 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
{x : ℝ} (hl : -(2 * Real.pi) ≤ x) (hr : x ≤ 0) : Real.sin (x / 2) = -√((1 - Real.cos x) / 2) - Real.sin_arcsin 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : Real.sin (Real.arcsin x) = x - Real.arcsin_sin 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x : ℝ} (hx₁ : -(Real.pi / 2) ≤ x) (hx₂ : x ≤ Real.pi / 2) : Real.arcsin (Real.sin x) = x - Real.arcsin_le_iff_le_sin' 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x y : ℝ} (hy : y ∈ Set.Ico (-(Real.pi / 2)) (Real.pi / 2)) : Real.arcsin x ≤ y ↔ x ≤ Real.sin y - Real.le_arcsin_iff_sin_le' 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x y : ℝ} (hx : x ∈ Set.Ioc (-(Real.pi / 2)) (Real.pi / 2)) : x ≤ Real.arcsin y ↔ Real.sin x ≤ y - Real.arcsin_le_iff_le_sin 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x y : ℝ} (hx : x ∈ Set.Icc (-1) 1) (hy : y ∈ Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) : Real.arcsin x ≤ y ↔ x ≤ Real.sin y - Real.le_arcsin_iff_sin_le 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
{x y : ℝ} (hx : x ∈ Set.Icc (-(Real.pi / 2)) (Real.pi / 2)) (hy : y ∈ Set.Icc (-1) 1) : x ≤ Real.arcsin y ↔ Real.sin x ≤ y - Real.abs_iteratedDeriv_sin_le_one 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
(n : ℕ) (x : ℝ) : |iteratedDeriv n Real.sin x| ≤ 1 - Real.le_sin_mul 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
{x : ℝ} (hx : 0 ≤ x) (hx' : x ≤ 1) : x ≤ Real.sin (Real.pi / 2 * x) - Real.sin_gt_sub_cube 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
{x : ℝ} (h : 0 < x) (h' : x ≤ 1) : x - x ^ 3 / 4 < Real.sin x - Real.mul_le_sin 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
{x : ℝ} (hx : 0 ≤ x) (hx' : x ≤ Real.pi / 2) : 2 / Real.pi * x ≤ Real.sin x - Real.mul_abs_le_abs_sin 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
{x : ℝ} (hx : |x| ≤ Real.pi / 2) : 2 / Real.pi * |x| ≤ |Real.sin x| - Real.sin_le_mul 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds
{x : ℝ} (hx : -(Real.pi / 2) ≤ x) (hx₀ : x ≤ 0) : Real.sin x ≤ 2 / Real.pi * x - integral_sin_pow_succ_le 📋 Mathlib.Analysis.SpecialFunctions.Integrals.Basic
(n : ℕ) : ∫ (x : ℝ) in 0..Real.pi, Real.sin x ^ (n + 1) ≤ ∫ (x : ℝ) in 0..Real.pi, Real.sin x ^ n - EulerSine.integral_cos_mul_cos_pow_aux 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
{z : ℂ} {n : ℕ} (hn : 2 ≤ n) (hz : z ≠ 0) : ∫ (x : ℝ) in 0..Real.pi / 2, Complex.cos (2 * z * ↑x) * ↑(Real.cos x) ^ n = ↑n / (2 * z) * ∫ (x : ℝ) in 0..Real.pi / 2, Complex.sin (2 * z * ↑x) * ↑(Real.sin x) * ↑(Real.cos x) ^ (n - 1) - EulerSine.integral_sin_mul_sin_mul_cos_pow_eq 📋 Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
{z : ℂ} {n : ℕ} (hn : 2 ≤ n) (hz : z ≠ 0) : ∫ (x : ℝ) in 0..Real.pi / 2, Complex.sin (2 * z * ↑x) * ↑(Real.sin x) * ↑(Real.cos x) ^ (n - 1) = (↑n / (2 * z) * ∫ (x : ℝ) in 0..Real.pi / 2, Complex.cos (2 * z * ↑x) * ↑(Real.cos x) ^ n) - (↑n - 1) / (2 * z) * ∫ (x : ℝ) in 0..Real.pi / 2, Complex.cos (2 * z * ↑x) * ↑(Real.cos x) ^ (n - 2)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision d59d8f5