Loogle!
Result
Found 12 declarations mentioning RegularExpression.map.
- RegularExpression.map 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) : RegularExpression α → RegularExpression β - RegularExpression.map_id 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} (P : RegularExpression α) : RegularExpression.map id P = P - RegularExpression.map.eq_3 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (a : α) : RegularExpression.map f (RegularExpression.char a) = RegularExpression.char (f a) - RegularExpression.map.eq_1 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) : RegularExpression.map f RegularExpression.zero = 0 - RegularExpression.map.eq_2 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) : RegularExpression.map f RegularExpression.epsilon = 1 - RegularExpression.map.eq_6 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (P : RegularExpression α) : RegularExpression.map f P.star = (RegularExpression.map f P).star - RegularExpression.map_map 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} {γ : Type u_3} (g : β → γ) (f : α → β) (P : RegularExpression α) : RegularExpression.map g (RegularExpression.map f P) = RegularExpression.map (g ∘ f) P - RegularExpression.map.eq_4 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (P Q : RegularExpression α) : RegularExpression.map f (P.plus Q) = RegularExpression.map f P + RegularExpression.map f Q - RegularExpression.map.eq_5 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (P Q : RegularExpression α) : RegularExpression.map f (P.comp Q) = RegularExpression.map f P * RegularExpression.map f Q - RegularExpression.map_pow 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (P : RegularExpression α) (n : ℕ) : RegularExpression.map f (P ^ n) = RegularExpression.map f P ^ n - RegularExpression.matches'_map 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (P : RegularExpression α) : (RegularExpression.map f P).matches' = (Language.map f) P.matches' - RegularExpression.map.eq_def 📋 Mathlib.Computability.RegularExpressions
{α : Type u_1} {β : Type u_2} (f : α → β) (x✝ : RegularExpression α) : RegularExpression.map f x✝ = match x✝ with | RegularExpression.zero => 0 | RegularExpression.epsilon => 1 | RegularExpression.char a => RegularExpression.char (f a) | R.plus S => RegularExpression.map f R + RegularExpression.map f S | R.comp S => RegularExpression.map f R * RegularExpression.map f S | R.star => (RegularExpression.map f R).star
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65