Loogle!
Result
Found 4 declarations mentioning RestrictedProduct.map.
- RestrictedProduct.map ๐ Mathlib.Topology.Algebra.RestrictedProduct
{ฮนโ : Type u_3} {ฮนโ : Type u_4} (Rโ : ฮนโ โ Type u_5) (Rโ : ฮนโ โ Type u_6) {๐โ : Filter ฮนโ} {๐โ : Filter ฮนโ} {Aโ : (i : ฮนโ) โ Set (Rโ i)} {Aโ : (i : ฮนโ) โ Set (Rโ i)} (f : ฮนโ โ ฮนโ) (hf : Filter.Tendsto f ๐โ ๐โ) (ฯ : (j : ฮนโ) โ Rโ (f j) โ Rโ j) (hฯ : โแถ (j : ฮนโ) in ๐โ, Set.MapsTo (ฯ j) (Aโ (f j)) (Aโ j)) (x : RestrictedProduct (fun i => Rโ i) (fun i => Aโ i) ๐โ) : RestrictedProduct (fun j => Rโ j) (fun j => Aโ j) ๐โ - RestrictedProduct.map_apply ๐ Mathlib.Topology.Algebra.RestrictedProduct
{ฮนโ : Type u_3} {ฮนโ : Type u_4} (Rโ : ฮนโ โ Type u_5) (Rโ : ฮนโ โ Type u_6) {๐โ : Filter ฮนโ} {๐โ : Filter ฮนโ} {Aโ : (i : ฮนโ) โ Set (Rโ i)} {Aโ : (i : ฮนโ) โ Set (Rโ i)} (f : ฮนโ โ ฮนโ) (hf : Filter.Tendsto f ๐โ ๐โ) (ฯ : (j : ฮนโ) โ Rโ (f j) โ Rโ j) (hฯ : โแถ (j : ฮนโ) in ๐โ, Set.MapsTo (ฯ j) (Aโ (f j)) (Aโ j)) (x : RestrictedProduct (fun i => Rโ i) (fun i => Aโ i) ๐โ) (j : ฮนโ) : (RestrictedProduct.map Rโ Rโ f hf ฯ hฯ x) j = ฯ j (x (f j)) - RestrictedProduct.mapAddMonoidHom.eq_1 ๐ Mathlib.Topology.Algebra.RestrictedProduct
{ฮนโ : Type u_3} {ฮนโ : Type u_4} (Rโ : ฮนโ โ Type u_5) (Rโ : ฮนโ โ Type u_6) {๐โ : Filter ฮนโ} {๐โ : Filter ฮนโ} {Sโ : ฮนโ โ Type u_7} {Sโ : ฮนโ โ Type u_8} [(i : ฮนโ) โ SetLike (Sโ i) (Rโ i)] [(j : ฮนโ) โ SetLike (Sโ j) (Rโ j)] {Bโ : (i : ฮนโ) โ Sโ i} {Bโ : (j : ฮนโ) โ Sโ j} (f : ฮนโ โ ฮนโ) (hf : Filter.Tendsto f ๐โ ๐โ) [(i : ฮนโ) โ AddMonoid (Rโ i)] [(i : ฮนโ) โ AddMonoid (Rโ i)] [โ (i : ฮนโ), AddSubmonoidClass (Sโ i) (Rโ i)] [โ (i : ฮนโ), AddSubmonoidClass (Sโ i) (Rโ i)] (ฯ : (j : ฮนโ) โ Rโ (f j) โ+ Rโ j) (hฯ : โแถ (j : ฮนโ) in ๐โ, Set.MapsTo โ(ฯ j) โ(Bโ (f j)) โ(Bโ j)) : RestrictedProduct.mapAddMonoidHom Rโ Rโ f hf ฯ hฯ = { toFun := RestrictedProduct.map Rโ Rโ f hf (fun j r => (ฯ j) r) hฯ, map_zero' := โฏ, map_add' := โฏ } - RestrictedProduct.mapMonoidHom.eq_1 ๐ Mathlib.Topology.Algebra.RestrictedProduct
{ฮนโ : Type u_3} {ฮนโ : Type u_4} (Rโ : ฮนโ โ Type u_5) (Rโ : ฮนโ โ Type u_6) {๐โ : Filter ฮนโ} {๐โ : Filter ฮนโ} {Sโ : ฮนโ โ Type u_7} {Sโ : ฮนโ โ Type u_8} [(i : ฮนโ) โ SetLike (Sโ i) (Rโ i)] [(j : ฮนโ) โ SetLike (Sโ j) (Rโ j)] {Bโ : (i : ฮนโ) โ Sโ i} {Bโ : (j : ฮนโ) โ Sโ j} (f : ฮนโ โ ฮนโ) (hf : Filter.Tendsto f ๐โ ๐โ) [(i : ฮนโ) โ Monoid (Rโ i)] [(i : ฮนโ) โ Monoid (Rโ i)] [โ (i : ฮนโ), SubmonoidClass (Sโ i) (Rโ i)] [โ (i : ฮนโ), SubmonoidClass (Sโ i) (Rโ i)] (ฯ : (j : ฮนโ) โ Rโ (f j) โ* Rโ j) (hฯ : โแถ (j : ฮนโ) in ๐โ, Set.MapsTo โ(ฯ j) โ(Bโ (f j)) โ(Bโ j)) : RestrictedProduct.mapMonoidHom Rโ Rโ f hf ฯ hฯ = { toFun := RestrictedProduct.map Rโ Rโ f hf (fun j r => (ฯ j) r) hฯ, map_one' := โฏ, map_mul' := โฏ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08