Loogle!
Result
Found 15 declarations mentioning SProd.
- SProd 📋 Mathlib.Data.SProd
(α : Type u) (β : Type v) (γ : outParam (Type w)) : Type (max (max u v) w) - SProd.mk 📋 Mathlib.Data.SProd
{α : Type u} {β : Type v} {γ : outParam (Type w)} (sprod : α → β → γ) : SProd α β γ - SProd.sprod 📋 Mathlib.Data.SProd
{α : Type u} {β : Type v} {γ : outParam (Type w)} [self : SProd α β γ] : α → β → γ - Set.instSProd 📋 Mathlib.Data.Set.Operations
{α : Type u} {β : Type v} : SProd (Set α) (Set β) (Set (α × β)) - List.instSProd 📋 Mathlib.Data.List.Defs
{α : Type u_1} {β : Type u_2} : SProd (List α) (List β) (List (α × β)) - Multiset.instSProd 📋 Mathlib.Data.Multiset.Bind
{α : Type u_1} {β : Type v} : SProd (Multiset α) (Multiset β) (Multiset (α × β)) - Finset.instSProd 📋 Mathlib.Data.Finset.Prod
{α : Type u_1} {β : Type u_2} : SProd (Finset α) (Finset β) (Finset (α × β)) - Filter.instSProd 📋 Mathlib.Order.Filter.Defs
{α : Type u_1} {β : Type u_2} : SProd (Filter α) (Filter β) (Filter (α × β)) - TopologicalSpace.Clopens.instSProdProd 📋 Mathlib.Topology.Sets.Closeds
{α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] : SProd (TopologicalSpace.Clopens α) (TopologicalSpace.Clopens β) (TopologicalSpace.Clopens (α × β)) - TopologicalSpace.CompactOpens.instSProdProd 📋 Mathlib.Topology.Sets.Compacts
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] : SProd (TopologicalSpace.CompactOpens α) (TopologicalSpace.CompactOpens β) (TopologicalSpace.CompactOpens (α × β)) - TopologicalSpace.Compacts.instSProdProd 📋 Mathlib.Topology.Sets.Compacts
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] : SProd (TopologicalSpace.Compacts α) (TopologicalSpace.Compacts β) (TopologicalSpace.Compacts (α × β)) - TopologicalSpace.NonemptyCompacts.instSProdProd 📋 Mathlib.Topology.Sets.Compacts
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] : SProd (TopologicalSpace.NonemptyCompacts α) (TopologicalSpace.NonemptyCompacts β) (TopologicalSpace.NonemptyCompacts (α × β)) - TopologicalSpace.PositiveCompacts.instSProdProd 📋 Mathlib.Topology.Sets.Compacts
{α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] : SProd (TopologicalSpace.PositiveCompacts α) (TopologicalSpace.PositiveCompacts β) (TopologicalSpace.PositiveCompacts (α × β)) - LowerSet.instSProd 📋 Mathlib.Order.UpperLower.Prod
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] : SProd (LowerSet α) (LowerSet β) (LowerSet (α × β)) - UpperSet.instSProd 📋 Mathlib.Order.UpperLower.Prod
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] : SProd (UpperSet α) (UpperSet β) (UpperSet (α × β))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454