Loogle!
Result
Found 6 declarations mentioning SSet.OneTruncation₂.map.
- SSet.OneTruncation₂.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{S T : SSet.Truncated 2} (f : S ⟶ T) : SSet.OneTruncation₂ S ⥤rq SSet.OneTruncation₂ T - SSet.oneTruncation₂_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{X✝ Y✝ : SSet.Truncated 2} (f : X✝ ⟶ Y✝) : SSet.oneTruncation₂.map f = SSet.OneTruncation₂.map f - SSet.OneTruncation₂.map_obj 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{S T : SSet.Truncated 2} (f : S ⟶ T) (x : SSet.OneTruncation₂ S) : (SSet.OneTruncation₂.map f).obj x = f.app (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.OneTruncation₂._proof_1 }) x - SSet.OneTruncation₂.map_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{S T : SSet.Truncated 2} (f : S ⟶ T) {X✝ Y✝ : SSet.OneTruncation₂ S} (e : X✝ ⟶ Y✝) : (SSet.OneTruncation₂.map f).map e = SSet.Truncated.Edge.map e f - CategoryTheory.toNerve₂.ext 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{X : SSet.Truncated 2} {C : Type u} [CategoryTheory.Category.{u, u} C] {F G : X ⟶ (SSet.truncation 2).obj (CategoryTheory.nerve C)} (h : SSet.OneTruncation₂.map F = SSet.OneTruncation₂.map G) : F = G - SSet.OneTruncation₂.nerve_hom_ext 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{X : SSet.Truncated 2} {C : Type u} [CategoryTheory.Category.{u, u} C] {F G : X ⟶ (SSet.truncation 2).obj (CategoryTheory.nerve C)} (h : SSet.OneTruncation₂.map F = SSet.OneTruncation₂.map G) : F = G
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c