Loogle!
Result
Found 7 declarations mentioning SSet.Path.map.
- SSet.Path.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{X Y : SSet} {n : ℕ} (f : X.Path n) (σ : X ⟶ Y) : Y.Path n - SSet.Path.map_interval 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{X Y : SSet} {n : ℕ} (f : X.Path n) (σ : X ⟶ Y) (j l : ℕ) (h : j + l ≤ n) : (f.map σ).interval j l h = (f.interval j l h).map σ - SSet.Path.map_arrow 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{X Y : SSet} {n : ℕ} (f : X.Path n) (σ : X ⟶ Y) (i : Fin n) : (f.map σ).arrow i = σ.app (Opposite.op (SimplexCategory.mk 1)) (f.arrow i) - SSet.Path.map_vertex 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{X Y : SSet} {n : ℕ} (f : X.Path n) (σ : X ⟶ Y) (i : Fin (n + 1)) : (f.map σ).vertex i = σ.app (Opposite.op (SimplexCategory.mk 0)) (f.vertex i) - SSet.Subcomplex.map_ι_liftPath 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{X : SSet} (A : X.Subcomplex) {n : ℕ} (p : X.Path n) (hp₀ : ∀ (j : Fin (n + 1)), p.vertex j ∈ A.obj (Opposite.op (SimplexCategory.mk 0))) (hp₁ : ∀ (j : Fin n), p.arrow j ∈ A.obj (Opposite.op (SimplexCategory.mk 1))) : (A.liftPath p hp₀ hp₁).map A.ι = p - SSet.horn.spineId_map_hornInclusion 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{n : ℕ} (i : Fin (n + 3)) (h₀ : 0 < i) (hₙ : i < Fin.last (n + 2)) : (SSet.horn.spineId i h₀ hₙ).map (SSet.horn (n + 2) i).ι = SSet.stdSimplex.spineId (n + 2) - SSet.StrictSegal.spineToSimplex_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.StrictSegal
{X Y : SSet} (sx : X.StrictSegal) (sy : Y.StrictSegal) {n : ℕ} (f : X.Path (n + 1)) (σ : X ⟶ Y) : sy.spineToSimplex (f.map σ) = σ.app (Opposite.op (SimplexCategory.mk (n + 1))) (sx.spineToSimplex f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65