Loogle!
Result
Found 39 declarations mentioning SSet.RelativeMorphism.map.
- SSet.RelativeMorphism.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (self : SSet.RelativeMorphism A B φ) : X ⟶ Y - SSet.RelativeMorphism.image_le 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) : A.image f.map ≤ B - SSet.RelativeMorphism.le_preimage 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) : A ≤ B.preimage f.map - SSet.RelativeMorphism.ext 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {x y : SSet.RelativeMorphism A B φ} (map : x.map = y.map) : x = y - SSet.RelativeMorphism.ext_iff 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {x y : SSet.RelativeMorphism A B φ} : x = y ↔ x.map = y.map - SSet.RelativeMorphism.comm 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (self : SSet.RelativeMorphism A B φ) : CategoryTheory.CategoryStruct.comp A.ι self.map = CategoryTheory.CategoryStruct.comp φ B.ι - SSet.RelativeMorphism.const_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {y : Y.obj (Opposite.op (SimplexCategory.mk 0))} {φ : A.toSSet ⟶ (SSet.Subcomplex.ofSimplex y).toSSet} : SSet.RelativeMorphism.const.map = SSet.const y - SSet.RelativeMorphism.Homotopy.h₀ 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (self : f.Homotopy g) : CategoryTheory.CategoryStruct.comp SSet.ι₀ self.h = f.map - SSet.RelativeMorphism.Homotopy.h₁ 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (self : f.Homotopy g) : CategoryTheory.CategoryStruct.comp SSet.ι₁ self.h = g.map - SSet.RelativeMorphism.comm_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (self : SSet.RelativeMorphism A B φ) {Z : SSet} (h : Y ⟶ Z) : CategoryTheory.CategoryStruct.comp A.ι (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp φ (CategoryTheory.CategoryStruct.comp B.ι h) - SSet.RelativeMorphism.Homotopy.refl_h 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) : (SSet.RelativeMorphism.Homotopy.refl f).h = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst X (SSet.stdSimplex.obj (SimplexCategory.mk 1))) f.map - SSet.RelativeMorphism.comp_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) {C : Z.Subcomplex} {ψ : B.toSSet ⟶ C.toSSet} (f' : SSet.RelativeMorphism B C ψ) {φψ : A.toSSet ⟶ C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) : (f.comp f' fac).map = CategoryTheory.CategoryStruct.comp f.map f'.map - SSet.RelativeMorphism.Homotopy.h₀_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (self : f.Homotopy g) {Z : SSet} (h : Y ⟶ Z) : CategoryTheory.CategoryStruct.comp SSet.ι₀ (CategoryTheory.CategoryStruct.comp self.h h) = CategoryTheory.CategoryStruct.comp f.map h - SSet.RelativeMorphism.Homotopy.h₁_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (self : f.Homotopy g) {Z : SSet} (h : Y ⟶ Z) : CategoryTheory.CategoryStruct.comp SSet.ι₁ (CategoryTheory.CategoryStruct.comp self.h h) = CategoryTheory.CategoryStruct.comp g.map h - SSet.RelativeMorphism.Homotopy.ofEq_h 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (h : f = g) : (SSet.RelativeMorphism.Homotopy.ofEq h).h = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst X (SSet.stdSimplex.obj (SimplexCategory.mk 1))) f.map - SSet.RelativeMorphism.map_coe 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : ↑(A.obj n)) : f.map.app n ↑a = ↑(φ.app n a) - SSet.RelativeMorphism.Homotopy.postcomp_h 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} {C : Z.Subcomplex} {ψ : B.toSSet ⟶ C.toSSet} (h : f.Homotopy g) (f' : SSet.RelativeMorphism B C ψ) {φψ : A.toSSet ⟶ C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) : (h.postcomp f' fac).h = CategoryTheory.CategoryStruct.comp h.h f'.map - SSet.RelativeMorphism.map_eq_of_mem 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} (f : SSet.RelativeMorphism A B φ) {n : SimplexCategoryᵒᵖ} (a : X.obj n) (ha : a ∈ A.obj n) : f.map.app n a = ↑(φ.app n ⟨a, ha⟩) - SSet.RelativeMorphism.ofSimplex₀_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} (f : X ⟶ Y) (x : X.obj (Opposite.op (SimplexCategory.mk 0))) (y : Y.obj (Opposite.op (SimplexCategory.mk 0))) (h : f.app (Opposite.op (SimplexCategory.mk 0)) x = y) : (SSet.RelativeMorphism.ofSimplex₀ f x y h).map = f - SSet.RelativeMorphism.Homotopy.precomp_h 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y Z : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {C : Z.Subcomplex} {ψ : B.toSSet ⟶ C.toSSet} {f' g' : SSet.RelativeMorphism B C ψ} (h : f'.Homotopy g') (f : SSet.RelativeMorphism A B φ) {φψ : A.toSSet ⟶ C.toSSet} (fac : CategoryTheory.CategoryStruct.comp φ ψ = φψ) : (h.precomp f fac).h = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight f.map (SSet.stdSimplex.obj (SimplexCategory.mk 1))) h.h - SSet.RelativeMorphism.Homotopy.mk 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (h : CategoryTheory.MonoidalCategoryStruct.tensorObj X (SSet.stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Y) (h₀ : CategoryTheory.CategoryStruct.comp SSet.ι₀ h = f.map := by cat_disch) (h₁ : CategoryTheory.CategoryStruct.comp SSet.ι₁ h = g.map := by cat_disch) (rel : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.ι (SSet.stdSimplex.obj (SimplexCategory.mk 1))) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst A.toSSet (SSet.stdSimplex.obj (SimplexCategory.mk 1))) (CategoryTheory.CategoryStruct.comp φ B.ι) := by cat_disch) : f.Homotopy g - SSet.RelativeMorphism.Homotopy.mk.injEq 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (h : CategoryTheory.MonoidalCategoryStruct.tensorObj X (SSet.stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Y) (h₀ : CategoryTheory.CategoryStruct.comp SSet.ι₀ h = f.map := by cat_disch) (h₁ : CategoryTheory.CategoryStruct.comp SSet.ι₁ h = g.map := by cat_disch) (rel : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.ι (SSet.stdSimplex.obj (SimplexCategory.mk 1))) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst A.toSSet (SSet.stdSimplex.obj (SimplexCategory.mk 1))) (CategoryTheory.CategoryStruct.comp φ B.ι) := by cat_disch) (h✝ : CategoryTheory.MonoidalCategoryStruct.tensorObj X (SSet.stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Y) (h₀✝ : CategoryTheory.CategoryStruct.comp SSet.ι₀ h✝ = f.map := by cat_disch) (h₁✝ : CategoryTheory.CategoryStruct.comp SSet.ι₁ h✝ = g.map := by cat_disch) (rel✝ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.ι (SSet.stdSimplex.obj (SimplexCategory.mk 1))) h✝ = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst A.toSSet (SSet.stdSimplex.obj (SimplexCategory.mk 1))) (CategoryTheory.CategoryStruct.comp φ B.ι) := by cat_disch) : ({ h := h, h₀ := h₀, h₁ := h₁, rel := rel } = { h := h✝, h₀ := h₀✝, h₁ := h₁✝, rel := rel✝ }) = (h = h✝) - SSet.RelativeMorphism.Homotopy.mk.sizeOf_spec 📋 Mathlib.AlgebraicTopology.SimplicialSet.RelativeMorphism
{X Y : SSet} {A : X.Subcomplex} {B : Y.Subcomplex} {φ : A.toSSet ⟶ B.toSSet} {f g : SSet.RelativeMorphism A B φ} (h : CategoryTheory.MonoidalCategoryStruct.tensorObj X (SSet.stdSimplex.obj (SimplexCategory.mk 1)) ⟶ Y) (h₀ : CategoryTheory.CategoryStruct.comp SSet.ι₀ h = f.map := by cat_disch) (h₁ : CategoryTheory.CategoryStruct.comp SSet.ι₁ h = g.map := by cat_disch) (rel : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.ι (SSet.stdSimplex.obj (SimplexCategory.mk 1))) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.SemiCartesianMonoidalCategory.fst A.toSSet (SSet.stdSimplex.obj (SimplexCategory.mk 1))) (CategoryTheory.CategoryStruct.comp φ B.ι) := by cat_disch) : sizeOf { h := h, h₀ := h₀, h₁ := h₁, rel := rel } = 1 + sizeOf h + sizeOf h₀ + sizeOf h₁ + sizeOf rel - SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) self.map = g.map - SSet.PtSimplex.MulStruct.δ_succ_castSucc_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) self.map = fg.map - SSet.PtSimplex.MulStruct.δ_succ_succ_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) self.map = f.map - SSet.PtSimplex.RelStruct.δ_castSucc_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (self : f.RelStruct g i) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) self.map = f.map - SSet.PtSimplex.RelStruct.δ_succ_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (self : f.RelStruct g i) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) self.map = g.map - SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) {Z : SSet} (h : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp g.map h - SSet.PtSimplex.MulStruct.δ_succ_castSucc_map_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) {Z : SSet} (h : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp fg.map h - SSet.PtSimplex.MulStruct.δ_succ_succ_map_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (self : f.MulStruct g fg i) {Z : SSet} (h : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp f.map h - SSet.PtSimplex.RelStruct.δ_castSucc_map_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (self : f.RelStruct g i) {Z : SSet} (h : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp f.map h - SSet.PtSimplex.RelStruct.δ_succ_map_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (self : f.RelStruct g i) {Z : SSet} (h : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) (CategoryTheory.CategoryStruct.comp self.map h) = CategoryTheory.CategoryStruct.comp g.map h - SSet.PtSimplex.RelStruct.mk 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) map = f.map := by cat_disch) (δ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) map = g.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) : f.RelStruct g i - SSet.PtSimplex.MulStruct.mk 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) map = g.map := by cat_disch) (δ_succ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) map = fg.map := by cat_disch) (δ_succ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) map = f.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) : f.MulStruct g fg i - SSet.PtSimplex.RelStruct.mk.injEq 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) map = f.map := by cat_disch) (δ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) map = g.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (map✝ : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_map✝ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) map✝ = f.map := by cat_disch) (δ_succ_map✝ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) map✝ = g.map := by cat_disch) (δ_map_of_lt✝ : ∀ j < i.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map✝ = SSet.const x := by cat_disch) (δ_map_of_gt✝ : ∀ (j : Fin (n + 2)), i.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map✝ = SSet.const x := by cat_disch) : ({ map := map, δ_castSucc_map := δ_castSucc_map, δ_succ_map := δ_succ_map, δ_map_of_lt := δ_map_of_lt, δ_map_of_gt := δ_map_of_gt } = { map := map✝, δ_castSucc_map := δ_castSucc_map✝, δ_succ_map := δ_succ_map✝, δ_map_of_lt := δ_map_of_lt✝, δ_map_of_gt := δ_map_of_gt✝ }) = (map = map✝) - SSet.PtSimplex.RelStruct.mk.sizeOf_spec 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g : X.PtSimplex n x} {i : Fin (n + 1)} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc) map = f.map := by cat_disch) (δ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ) map = g.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) : sizeOf { map := map, δ_castSucc_map := δ_castSucc_map, δ_succ_map := δ_succ_map, δ_map_of_lt := δ_map_of_lt, δ_map_of_gt := δ_map_of_gt } = 1 + sizeOf map + sizeOf δ_castSucc_map + sizeOf δ_succ_map - SSet.PtSimplex.MulStruct.mk.injEq 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) map = g.map := by cat_disch) (δ_succ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) map = fg.map := by cat_disch) (δ_succ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) map = f.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (map✝ : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_castSucc_map✝ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) map✝ = g.map := by cat_disch) (δ_succ_castSucc_map✝ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) map✝ = fg.map := by cat_disch) (δ_succ_succ_map✝ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) map✝ = f.map := by cat_disch) (δ_map_of_lt✝ : ∀ j < i.castSucc.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map✝ = SSet.const x := by cat_disch) (δ_map_of_gt✝ : ∀ (j : Fin (n + 2)), i.succ.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map✝ = SSet.const x := by cat_disch) : ({ map := map, δ_castSucc_castSucc_map := δ_castSucc_castSucc_map, δ_succ_castSucc_map := δ_succ_castSucc_map, δ_succ_succ_map := δ_succ_succ_map, δ_map_of_lt := δ_map_of_lt, δ_map_of_gt := δ_map_of_gt } = { map := map✝, δ_castSucc_castSucc_map := δ_castSucc_castSucc_map✝, δ_succ_castSucc_map := δ_succ_castSucc_map✝, δ_succ_succ_map := δ_succ_succ_map✝, δ_map_of_lt := δ_map_of_lt✝, δ_map_of_gt := δ_map_of_gt✝ }) = (map = map✝) - SSet.PtSimplex.MulStruct.mk.sizeOf_spec 📋 Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
{X : SSet} {n : ℕ} {x : X.obj (Opposite.op (SimplexCategory.mk 0))} {f g fg : X.PtSimplex n x} {i : Fin n} (map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) ⟶ X) (δ_castSucc_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.castSucc) map = g.map := by cat_disch) (δ_succ_castSucc_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.castSucc.succ) map = fg.map := by cat_disch) (δ_succ_succ_map : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ i.succ.succ) map = f.map := by cat_disch) (δ_map_of_lt : ∀ j < i.castSucc.castSucc, CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) (δ_map_of_gt : ∀ (j : Fin (n + 2)), i.succ.succ < j → CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ j) map = SSet.const x := by cat_disch) : sizeOf { map := map, δ_castSucc_castSucc_map := δ_castSucc_castSucc_map, δ_succ_castSucc_map := δ_succ_castSucc_map, δ_succ_succ_map := δ_succ_succ_map, δ_map_of_lt := δ_map_of_lt, δ_map_of_gt := δ_map_of_gt } = 1 + sizeOf map + sizeOf δ_castSucc_castSucc_map + sizeOf δ_succ_castSucc_map + sizeOf δ_succ_succ_map
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c