Loogle!
Result
Found 9 declarations mentioning SSet.Truncated.Edge.map.
- SSet.Truncated.Edge.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated
{X Y : SSet.Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 })} (e : SSet.Truncated.Edge x₀ x₁) (f : X ⟶ Y) : SSet.Truncated.Edge (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 }) x₀) (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 }) x₁) - SSet.Truncated.Edge.map_id 📋 Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated
{X Y : SSet.Truncated 2} (x : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 })) (f : X ⟶ Y) : (SSet.Truncated.Edge.id x).map f = SSet.Truncated.Edge.id (f.app (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 }) x) - SSet.Truncated.Edge.map_edge 📋 Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated
{X Y : SSet.Truncated 2} {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 })} (e : SSet.Truncated.Edge x₀ x₁) (f : X ⟶ Y) : (e.map f).edge = f.app (Opposite.op { obj := SimplexCategory.mk 1, property := SSet.Truncated.Edge._proof_2 }) e.edge - SSet.Truncated.Edge.CompStruct.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated
{X Y : SSet.Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 })} {e₀₁ : SSet.Truncated.Edge x₀ x₁} {e₁₂ : SSet.Truncated.Edge x₁ x₂} {e₀₂ : SSet.Truncated.Edge x₀ x₂} (h : e₀₁.CompStruct e₁₂ e₀₂) (f : X ⟶ Y) : (e₀₁.map f).CompStruct (e₁₂.map f) (e₀₂.map f) - SSet.Truncated.Edge.CompStruct.map_simplex 📋 Mathlib.AlgebraicTopology.SimplicialSet.CompStructTruncated
{X Y : SSet.Truncated 2} {x₀ x₁ x₂ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.Truncated.Edge._proof_1 })} {e₀₁ : SSet.Truncated.Edge x₀ x₁} {e₁₂ : SSet.Truncated.Edge x₁ x₂} {e₀₂ : SSet.Truncated.Edge x₀ x₂} (h : e₀₁.CompStruct e₁₂ e₀₂) (f : X ⟶ Y) : (h.map f).simplex = f.app (Opposite.op { obj := SimplexCategory.mk 2, property := SSet.Truncated.Edge.CompStruct._proof_1 }) h.simplex - SSet.OneTruncation₂.map_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{S T : SSet.Truncated 2} (f : S ⟶ T) {X✝ Y✝ : SSet.OneTruncation₂ S} (e : X✝ ⟶ Y✝) : (SSet.OneTruncation₂.map f).map e = SSet.Truncated.Edge.map e f - SSet.Truncated.mapHomotopyCategory_homMk 📋 Mathlib.AlgebraicTopology.SimplicialSet.HomotopyCat
{V W : SSet.Truncated 2} (f : V ⟶ W) {x y : V.obj (Opposite.op { obj := SimplexCategory.mk 0, property := SSet.OneTruncation₂._proof_1 })} (e : SSet.Truncated.Edge x y) : (SSet.Truncated.mapHomotopyCategory f).map (SSet.Truncated.HomotopyCategory.homMk e) = SSet.Truncated.HomotopyCategory.homMk (e.map f) - SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk 📋 Mathlib.AlgebraicTopology.SimplicialSet.NerveAdjunction
{X : SSet.Truncated 2} {C : Type u} [CategoryTheory.SmallCategory C] (φ : X ⟶ (SSet.truncation 2).obj (CategoryTheory.nerve C)) {x₀ x₁ : X.obj (Opposite.op { obj := SimplexCategory.mk 0, property := _proof_11✝ })} (e : SSet.Truncated.Edge x₀ x₁) : (SSet.Truncated.HomotopyCategory.descOfTruncation φ).map (SSet.Truncated.HomotopyCategory.homMk e) = CategoryTheory.nerve.homEquiv (e.map φ) - CategoryTheory.nerve.functorOfNerveMap_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.NerveAdjunction
{C D : Type u} [CategoryTheory.SmallCategory C] [CategoryTheory.SmallCategory D] (φ : CategoryTheory.Nerve.nerveFunctor₂.obj (CategoryTheory.Cat.of C) ⟶ CategoryTheory.Nerve.nerveFunctor₂.obj (CategoryTheory.Cat.of D)) {X✝ Y✝ : C} (f : X✝ ⟶ Y✝) : (CategoryTheory.nerve.functorOfNerveMap φ).map f = CategoryTheory.nerve.homEquiv ((CategoryTheory.nerve.edgeMk f).toTruncated.map φ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c