Loogle!
Result
Found 5 declarations mentioning SSet.Truncated.Path.map.
- SSet.Truncated.Path.map 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{n : ℕ} {X Y : SSet.Truncated (n + 1)} {m : ℕ} (f : X.Path m) (σ : X ⟶ Y) : Y.Path m - SSet.Truncated.Path.map_interval 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{n : ℕ} {X Y : SSet.Truncated (n + 1)} {m : ℕ} (f : X.Path m) (σ : X ⟶ Y) (j l : ℕ) (h : j + l ≤ m) : (f.map σ).interval j l h = (f.interval j l h).map σ - SSet.Truncated.Path.map_arrow 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{n : ℕ} {X Y : SSet.Truncated (n + 1)} {m : ℕ} (f : X.Path m) (σ : X ⟶ Y) (i : Fin m) : (f.map σ).arrow i = σ.app (Opposite.op { obj := SimplexCategory.mk 1, property := ⋯ }) (f.arrow i) - SSet.Truncated.Path.map_vertex 📋 Mathlib.AlgebraicTopology.SimplicialSet.Path
{n : ℕ} {X Y : SSet.Truncated (n + 1)} {m : ℕ} (f : X.Path m) (σ : X ⟶ Y) (i : Fin (m + 1)) : (f.map σ).vertex i = σ.app (Opposite.op { obj := SimplexCategory.mk 0, property := ⋯ }) (f.vertex i) - SSet.Truncated.StrictSegal.spineToSimplex_map 📋 Mathlib.AlgebraicTopology.SimplicialSet.StrictSegal
{n : ℕ} {X Y : SSet.Truncated (n + 1)} (sx : X.StrictSegal) (sy : Y.StrictSegal) (m : ℕ) (h : m ≤ n) (f : X.Path (m + 1)) (σ : X ⟶ Y) : sy.spineToSimplex (m + 1) ⋯ (f.map σ) = σ.app (Opposite.op { obj := SimplexCategory.mk (m + 1), property := ⋯ }) (sx.spineToSimplex (m + 1) ⋯ f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65